
REVIEW
www.lpr-journal.org

Arbitrary Energy-Preserving Control of Optical Pulse Trains
and Frequency Combs through Generalized Talbot Effects

Luis Romero Cortés,* Reza Maram, Hugues Guillet de Chatellus, and José Azaña

Trains of optical pulses and optical-frequency combs are periodic waveforms
with deep implications for a wide range of scientific disciplines and
technological applications. Recently, phase-only signal-processing techniques
based upon the theory of Talbot self-imaging have been demonstrated as
simple and practical means for user-defined periodicity control of optical
pulse trains and combs. The resulting schemes implement a desired
repetition period control without introducing any noise or distortion, while
ideally preserving the entire energy content of the signal. Here, recent
developments on phase-only signal-processing schemes for periodicity
control based on temporal and spectral self-imaging are reviewed. As a central
contribution, a comprehensive theory of generalized Talbot self-imaging, so
called phase-controlled Talbot effect, is presented, comprising all the different
approaches proposed to date. In particular, a closed unified mathematical
framework for the design of the spectral and temporal phase manipulations
that enable full arbitrary control of the period of repetitive signals is
developed. The reported numerical studies fully validate the presented
theoretical framework and shed light on crucial aspects of the proposed
methods, consistently with previously reported experimental results.
Important considerations concerning the practical, real-world implementation
of the described schemes, according to the needed specifications for different
applications, are also discussed.

1. Introduction

Since the first demonstrations of optical phase-locking and the
first mode-locked laser developments,[1] the capability to gener-
ate precisely timed periodic trains of optical pulses has pushed
forward many fields of science and technology. Extensive ef-
fort has been further devoted to the generation and control
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of optical frequency combs,[2–14] the
frequency-domain counterpart of time-
periodic coherent optical pulse trains.
A frequency comb consists of a set of
equally-spaced spectral components
(comb lines), with a frequency spacing
referred to as the free spectral range
(FSR). Periodic optical pulse trains and
frequency combs are key elements for a
myriad of scientific developments and
technological applications of great rele-
vance, including among others, ultrafast
optical and microwave signal genera-
tion and processing,[15–19] generation
of Terahertz pulses,[20] high-resolution
spectroscopy,[21–24] high-precision fre-
quency metrology,[25] high-accuracy fre-
quency calibration (e.g., as used in astro-
nomical telescopes),[26–29] high-capacity
telecommunication systems,[30–34] and
more recently, promising new avenues
for quantum computing.[35–38]

A fundamental parameter of these sig-
nals is their period of repetition: the
pulse period, tr , of a pulse train, or the
FSR, 𝜈r , of a frequency comb. Not only
most applications require that this pa-
rameter is fixed with precision (e.g., the

rate at which information is transmitted in a telecommunication
system is strongly related to the period of the clock signal[39]),
but distinct applications require fundamentally different orders
of magnitude. For instance, typical atomic and molecular spec-
troscopy applications require combs with FSR values in theMHz
regime,[24] while astronomical spectrographic measurements,[28]

as well as applications aimed at arbitrary waveform generation
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and processing,[16,19] are performed with combs in the GHz
regime. Techniques for manipulating the period of repetitive sig-
nals are thus key for such applications. Optical pulse trains (and
their frequency comb spectra) are commonly generated using
mode-locked lasers. These typically offer a limited flexibility to
design –and subsequently control– the repetition rate of the gen-
erated optical signal. For instance, integrated micro-cavity lasers
are suitable for generation of periodic optical waveforms with
repetition rates in the GHz regime, while longer cavities, such
as those used in fiber-based mode-locked lasers, provide access
to repetition rates in the MHz regime.[40] In order to control the
periodicity of the signals generated by these systems, one must
either modify the physical parameters of the laser cavity,for ex-
ample, its length (impractical or simply not possible in most sit-
uations), or resort to techniques such as harmonicmode-locking,
which typically results in a highly distorted output signal with de-
graded signal-to-noise ratio.[41,42] This calls for the need of period-
icity control through signal processing of the generated repetitive
waveforms outside the laser cavity.
Conventional periodicity control solutions based on signal pro-

cessing operations rely on wave transformations that directly af-
fect the energy content of the signal (e.g., spectral amplitude
filtering and temporal amplitude modulation); these methods
present critical shortcomings, not least of which is their inher-
ent energy inefficiency (briefly discussed in Section 2). Signal
processing solutions based on phase-only manipulations are par-
ticularly attractive,[43] as they recycle the energy carried by the
input signal into an output signal that satisfies the required
specifications.[44–50]

This review focuses on energy-preserving periodicity control
methods based on phase-only signal processing operations
based upon the theory of the Talbot effect.[51–56] Temporal Talbot
effect has been used to reduce the period of a temporal pulse
train, dividing it by an integer factor,[57,58] through the use of
an SPF process, for example, via dispersive propagation[59]

(see Figure 1(a.1)). Its frequency domain counterpart, spectral
Talbot effect, has been used to reduce the FSR of a frequency
comb, dividing it by an integer factor,[60–62] through the use of
a temporal phase modulation (TPM) process, for example, via
electro-optical interaction[59] (see Figure 1(a.2)). A distinctive
feature of temporal and spectral Talbot effects is that they enable
manipulation of the repetition rate of an incoming pulse train
or the FSR of its corresponding frequency comb spectrum
without altering the individual temporal pulse characteristics
(i.e., the pulse’s complex temporal envelope, including shape
and duration) and the spectral envelope of the corresponding
frequency comb. Moreover, techniques based on such method-
ology have been proposed to manipulate the repetition period
of pulse trains and frequency combs at will, not limited to
integer division.[58,60–68] As illustrated in Figure 1b, these meth-
ods involve specific combinations of SPF and TPM operations
corresponding to concatenated individual realizations of tem-
poral and spectral Talbot effects. However, all such methods
reported to date are incomplete in that they do not provide a full
transformation of the signal’s repetition period in both the time
and frequency domains. As such, the periods of the obtained
pulse train and its corresponding frequency comb representa-
tion are generally unrelated after application of the method (see
Figure 1b). This work provides a closedmathematical description

Figure 1. Schemes for repetition period control through phase transfor-
mations (SPF: spectral phase filtering; TPM: temporal phase modulation)
based on the theory of the Talbot effect. a) Fractional temporal (1) and
spectral (2) Talbot effects; the repetition period of a pulse train or fre-
quency comb is divided by an integer factor r; the signal in the dual domain
is not modified and residual phase variations remain in both domains.
b) Combinations of Talbot phase transformations resulting in an arbitrary
control of the pulse period (1) or the FSR (2) of a repetitive signal; the pe-
riod multiplication factor, r, can take arbitrary (rational) values; the signal
representations in both the time and frequency domains have unrelated
repetition periods and residual phase variations remain uncompensated.
c) Proposed generalization of the repetition period control methods based
on dual Talbot effects, i.e., phase-controlled temporal (1) and spectral (2)
Talbot methods – the focus of this work, and developed in Section 4; the
period multiplication factor, r, can take arbitrary (rational) values; the sig-
nal representations in both time and frequency domains have related rep-
etition periods (the phase transformations are completed) and all residual
phase variations are compensated.
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of Talbot-based arbitrary periodicity control methods, here re-
ferred to as “phase-controlled Talbot effect”, and formulates the
conditions for completing the desired period transformations in
both the temporal and spectral domains of the signal of interest.
As illustrated in Figure 1c, the theory reported here exploits
the recently formalized mathematical symmetry between tem-
poral and spectral realizations of the Talbot effect, so-called
“time/frequency duality of self-imaging”.[69] Two alternative,
equivalent schemes are defined to achieve multiplication or
division of the temporal pulse repetition period –and the related
frequency spacing manipulation of the corresponding frequency
comb spectrum– by any desired integer or fractional factor
(see Figure 1c). Closed expressions are derived for calculating
the required temporal and spectral phase transformations for
arbitrarily tailoring the period of any given repetitive temporal
and/or spectral signal of interest.
The paper is structured as follows: Section 2 provides the basic

definitions of the relevant parameters of periodic waveforms in
their temporal and spectral representations, and briefly describes
the most conventional signal processing methods for periodic-
ity control of such waveforms and their drawbacks. Section 3
presents an overview of the fundamental theory of temporal and
spectral Talbot effect, upon which the signal processing methods
studied and reviewed in this paper are based. Section 4 describes
the methodology used in Talbot-based periodicity control signal
processing techniques, providing the closed mathematical for-
mulation of generalized phase-controlled Talbot effect (validated
through numerical simulation), and including important consid-
erations concerning practical implementations. Section 5 reviews
recent experimental work based on the described signal process-
ing methodology. Section 6 provides additional discussions and
concludes the paper.

2. Control of the Periodicity of Repetitive Signals

2.1. Fourier Relations for Periodic Signals

A periodic train of optical pulses, 𝜓(t), and its optical frequency
comb counterpart, Ψ(𝜈), are related by a Fourier transform.[70]

Figure 2 and Equations (1a) and (1b), illustrate this relationship.

𝜓(t) =
∞∑

n=−∞
𝛾
(
t − ntr

)
(1a)

Ψ(𝜈) =
∞∑

k=−∞
ck𝛿

(
𝜈 − k𝜈r

)
(1b)

where the variables t and 𝜈 stand for time and frequency, re-
spectively. These two equations form a Fourier transform pair,

Figure 2. Relationship between a coherent train of optical pulses with pe-
riod tr, and its spectral counterpart, a frequency comb with FSR 𝜈r = t−1r .
The symbolℱ denotes the Fourier transform.

so thatΨ(𝜈) = ℱ{𝜓(t)}, where the symbolℱ denotes the Fourier
transform, 𝛾(t) is the temporal complex envelope of an individ-
ual pulse, tr is the repetition period of the train, 𝛿(𝜈) is the uni-
tary Dirac delta function evaluated in the frequency domain, and
𝜈r = t−1r is the FSR. In this situation, the comb FSR dictates the
rate at which the pulse train completes a cycle in the time domain,
that is, its repetition rate. The coefficient ck = 𝜈rΓ(k𝜈r) represents
the complex weight of each comb line, where Γ(𝜈) = ℱ{𝛾(t)}
is the complex spectral envelope of the comb. Note that this
description only deals with the complex envelope of the involved
signals (often referred to as the equivalent base-band represen-
tation), and the underlying central frequency, or carrier, is omit-
ted for simplicity. The formal definition of other important pa-
rameters, such as the temporal and spectral peak powers and
noise content of the signal,[71] has also been omitted for sim-
plicity, as the following mathematical analysis focuses on tech-
niques tomanipulate the temporal and spectral periods (tr and 𝜈r ,
respectively).

2.2. Conventional Signal Processing Methods for Periodicity
Control

Conventional, well-established approaches for off-cavity periodic-
ity control of arbitrary pulse trains and frequency combs through
signal processing include spectral amplitude filtering and tempo-
ral pulse picking (or time gating), sketched in Figure 3. A spectral
amplitude filter is a straight-forward way of directly multiplying
the FSR of a frequency comb, simply by eliminating r − 1 out
of each r consecutive comb lines. This effectively produces an
r-fold increase of the FSR, and an associated r-fold reduction
of the pulse period of the train.[26,27,72–74] The dual operation is
also possible, in the form of pulse picking,[75] where a temporal

Figure 3. Conventional periodicity control methods for trains of optical
pulses and optical frequency combs. a) Spectral amplitude filtering and b)
pulse picking by temporal amplitude gating. By construction, these meth-
ods only allow periodicity manipulation in integer values of the parameter
r. As an example, a periodmultiplication factor r = 3 is shown. Bothmeth-
ods involve the deliberate discarding of a fraction 1 − r−1 of the original
signal energy, resulting in an energy loss that increases with the factor r.
Amplification may then become necessary for further processing and/or
detection of the signals of interest, thus incurring the associated degrada-
tion of the signal-to-noise ratio, unavoidable in classical active processes.
Additionally, the imperfect suppression of comb lines (temporal pulses)
results in undesired amplitude fluctuations of the output pulse train (fre-
quency comb), thus degrading the quality of the obtained signal.
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amplitude gate selects one pulse out of each r consecutive pulses
and throws away the remaining r − 1. The repetition period is
then directly increased by r, and the associated FSR of the cor-
responding comb spectrum is reduced by the same factor. The
main drawback of these approaches is their low energy efficiency,
as they rely on directly discarding signal energy. Additionally,
these methods suffer from practical implementation shortcom-
ings. The amplitude filtering method needs high-finesse filters,
with tight design and operational requirements (e.g., precise
spectral alignment between the filter and the comb), in order
to achieve signals with high quality (Figure 3a).[76] Similarly, the
imperfect suppression of undesired pulses in pulse picking tech-
niques results in spectral line-to-line amplitude fluctuations of
the obtained comb (Figure 3b). The relatively low extinction ratio
of current electro-optic intensity modulators often forces to use
optical gates based on nonlinear effects (incurring in even higher
energy inefficiency), or optical switches based on semiconductor
optical amplifiers and acousto-optic modulators (with typically
low operation speeds).[77–80] Moreover, a precise timing between
the pulse train and the pulse picking gate becomes a critical
factor for a correct pulse suppression. Approaches aimed at miti-
gating the problem of energy loss in pulse pickingmethods, such
as coherent addition of pulses in optical cavities, have also been
demonstrated; however these require stringent operation condi-
tions, difficult to achieve and maintain.[81] Last, but not the least,
the very nature of these techniques forces the factor r to be neces-
sary integer. This is due to the fact that one can only suppress an
integer number of pulses (or frequency lines) through an am-
plitude gate (or filter). Fractional period multiplication/division
could be achieved through combinations of amplitude filter-
ing and pulse picking techniques, suffering from the critical
aforementioned drawbacks associated with both methodologies.
Versatile methods to control the pulse period of optical trains
and the FSR of frequency combs with high energy efficiency and
low signal degradation based on passive, linear processes are
highly desired.
In order to avoid discarding energy of the signal of interest, a

period control method must rely exclusively on manipulations of
the phase distributions of the signal in the time and/or frequency
domains.[43] This way, the desired output signal is constructed
from the recycled energy of the input signal, preventing any loss
of energy in the process, except for practical insertion losses. Ad-
ditionally, such solutions offer an increased tolerance to practical
implementation errors, greatly relaxing the design requirements
of methods involving direct amplitude manipulations. Consid-
ering all these key advantages, several techniques for periodicity
control through phase manipulations have been proposed.
In particular, an important set of these techniques is based

on the theory of Talbot self-imaging.[58,60–67] Such methods have
been developed to achieve multiplication and/or division of the
repetition period of pulse trains by arbitrary (integer or fractional)
factors,[58,63–65] as well as arbitrary control of the FSR of frequency
combs.[60–62,66–68] Furthermore, due to the inherent phase-only na-
ture of these approaches, the entire energy of the processed signal
is ideally preserved; as a result, these methods are able to reduce
the impact of noise and signal aperiodicities (such as timing jitter
and pulse-to-pulse intensity fluctuations) under certain opera-
tion conditions.[63,65,67,82] The following section provides a brief
overview of the temporal and spectral Talbot self-imaging effects.

3. Overview of Temporal and Spectral Talbot Effects

Talbot effects, also known as self-imaging effects, have received
a great deal of attention through the last decades.[53,56] These
phenomena manifest when a wave exhibiting periodicity on one
of its representation domains (i.e., space, transverse momen-
tum, time or frequency) is affected by a propagator imposing a
specific quadratic phase profile across the Fourier-dual of such
domain. The mathematical definition of these phase profiles
is known as the “Talbot condition.”[69] This gives rise to per-
fect images of the wave (integer self-imaging) or to sub-images
where the initial period is divided by a natural number (fractional
self-imaging).
Although the effect was initially observed and explained in the

context of Fresnel diffraction of spatially periodic waves,[51,52] its
description was extended to the time domain[57,58] through the
application of the well-known space–time duality.[83,84] Such a
duality is a powerful mathematical tool that relates the equations
describing the propagation of spatial wavefronts in free space
and the propagation of temporal waveforms through dispersive
optical media. This theoretical framework has opened the door
to a myriad of time- and frequency-domain linear and nonlinear
optical signal processing applications inspired by free space
optics systems.[85]

More recently, Talbot effect was predicted and observed in
the frequency[60–62] and transverse momentum (observed in the
form of angular spectrum)[86] domains of optical waves. These
latest manifestations can be explained on the basis of the
time/frequency duality,[87] or, more generally, Fourier duality, of
Talbot self-imaging, that is, a symmetry in the laws governing the
effect in observation domains related by a Fourier transform.[69]

Since our main focus is on the control of optical trains and
frequency combs, we pay attention to the temporal and spectral
manifestations of the effect; however, it is worth mentioning that
all the results presented in this work are immediately applicable
to the space and transversemomentumdomains as well, through
direct application of the space–time duality.[83]

3.1. Temporal Talbot Effect

The temporal Talbot effect, represented in Figure 4a, is observed
when a periodic train of optical pulses, with period tr , propagates
through a transparent medium presenting a certain amount of
second-order group-velocity dispersion (GVD).[58] This process
can be described as a unitary phase filter, with a spectral trans-
fer function,ℋ(𝜔), given by

ℋ(𝜔) = e−i
1
2 𝛽2z𝜔

2
(2)

where i is the imaginary unit, 𝛽2 is the second-order dispersion
coefficient of the medium (GVD per unit length, measured at the
central frequency of the wave), z is the propagation length, and
𝜔 = 2𝜋𝜈.[59] Notice the quadratic phase variation as a function of
the Fourier-domain variable, 𝜔, as anticipated above. Equation 4
describes the simplified transfer function of a general transpar-
ent propagation medium, were 𝛽2 corresponds to the second-
order Taylor coefficient of the medium’s spectral phase distri-
bution. The constant and linear phase terms, corresponding to
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Figure 4. Representation of the formation of temporal and spectral Tal-
bot images and sub-images. a) Temporal Talbot (sub-)images of a train
of pulses generated by spectral phase filtering (SPF); the instantaneous
power distribution of the pulses is shown in red, while the acquired tem-
poral phase sequence is shown in green. b) Spectral Talbot (sub-)images
of a frequency comb generated by temporal phase modulation (TPM);
the power spectral density of the comb is shown in blue, while the ac-
quired spectral phase sequence is shown in purple. The output Talbot
(sub-)images are obtained for specific values of quadratic SPF or TPM (de-
termined by the fractions p∕q and s∕m in Equations (4) and (6)).

a mere average group delay of the resulting temporal sequence,
are not considered in this analysis. Additionally, high-order phase
terms are assumed to be negligible.
The main assumption here is that all pulses of the sequence

are identical, regardless of the particular amplitude and phase
profiles of their complex envelope, 𝛾(t). It should be noted
however that works on Talbot effect of aperiodic waves have been
conducted, leading to practical applications such as temporal
clock recovery techniques[88,89] and restoration of faulty spatial

images.[90–92] In what concerns the basic temporal Talbot effect,
no particular restrictions are imposed to the complex amplitude
envelope of the individual pulses in the input sequence (𝛾(t)
in Equation (1a) can take any value); however, the temporal
duration of the individual pulses will limit the amount of ob-
servable Talbot sub-images (this will be addressed in more detail
in Section 4.3.1). The temporal Talbot condition provides the
required amount of GVD, necessary to obtain a specific Talbot
(sub-)image.[58]

2𝜋||𝛽2||z =
p
q
t2r (3)

where p and q are two mutually prime natural numbers. The
pulse train obtained at the output of the dispersive medium has a
pulse period q−1tr (see Figure 4a), while the FSR of its comb spec-
trum remains unaltered. Since the process only involves a spec-
tral phase manipulation, the total input energy is redistributed
into a pulse train with a higher repetition rate; as such, the out-
put energy per pulse corresponds to the input energy per pulse
divided by q. As mentioned above, this repetition rate multiplica-
tion process is produced without altering the temporal features
(temporal duration and shape) of the individual pulses in the ob-
tained train.
Owing to the discrete nature of the spectral comb represen-

tation of the train, we can write a discrete form of the temporal
Talbot condition[69] as follows:

𝜙k;p,q = 𝜎𝜋
p
q
k2 (4)

where 𝜎 is the sign of the second-order dispersion coefficient

𝜎 =
⎧⎪⎨⎪⎩
−1 ∀ 𝛽2 < 0
0 ∀ 𝛽2 = 0
1 ∀ 𝛽2 > 0

(5)

The coefficient 𝜙k;p,q represents the required amount of spec-
tral phase-shift to be applied to the k-th line of the correspond-
ing frequency comb to satisfy the condition of the Talbot im-
age labeled by p∕q; for example, k = 0,±1,±2,…, where k = 0
represents the line at the central frequency of the comb. Equa-
tion (4) can be easily derived by evaluating the spectral phase
transfer function of the dispersive medium in Equation 4 at the
discrete frequency locations of the comb representation, that is,
∢ℋ(𝜔)|𝜔=2k𝜋𝜈r , under the Talbot condition in Equation (3).
A key feature of this effect is that the obtained period-divided

pulse train acquires a pulse-to-pulse temporal phase profile.
These temporal Talbot phases are deterministic,[54,55] and were
recently shown to also satisfy a Talbot condition.[69] Neglecting a
constant factor, these phases write as follows:

𝜑n;s,m = −𝜎𝜋 s
m
n2 (6)

where s and m are two mutually prime natural numbers, m = q,
and s and q have opposite parity.[69,93]

The coefficient 𝜑n;s,m represents the phase-shift acquired by
the n-th pulse of the output sequence (n = 0,±1,±2,…). The val-
ues of s depend only on p and q, and are determined by the par-
ity of the product pq. In particular, if 𝔼 denotes the set of even
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Figure 5. Normalized amplitude (top) and phase (bottom) Talbot carpets. In order to produce this picture, the ratio p∕q takes real values in the fun-
damental range [0,2] (the Talbot carpet is periodic and repeats outside of this interval ref. [69]). It is important to note that Talbot images form only at
rational values of p∕q, that is, where p and q are mutually prime natural numbers.

natural numbers and 𝕆 denotes the set of odd natural numbers,
the parameter s takes the following values

s =

⎧⎪⎪⎨⎪⎪⎩
p
([

1
p

]
q

)2

∀ pq ∈ 𝔼

8p
[
1
2

]
q

([
1
2p

]
q

)2

∀ pq ∈ 𝕆
(7)

where [1∕x]q is the modular multiplicative inverse of x modulo
q, that is, the (unique) positive integer smaller than q satisfying
x[1∕x]q = 1 (mod q).[69] A more compact form of this solution for
the parameter s was recently found[93]

sp = 1 + q𝜖q(mod 2q) (8)

where 𝜖q is the parity of q, that is,

𝜖q =

{
0 ∀ q ∈ 𝔼
1 ∀ q ∈ 𝕆

(9)

Figure 5 represents the output temporal waveform obtained
for each value of the ratio p∕q. The result is a periodic structure
known as the “Talbot carpet.” This picture contains all possible
Talbot images and sub-images. Figure 4a shows a more detailed
representation of the formation of temporal Talbot images and
sub-images for different values of p and q.
As an additional note, it is interesting to remark that, if reduced

modulo 2𝜋, the applied spectral phase sequence, 𝜙k;p,q in Equa-
tion (4), is q-periodic when pq ∈ 𝔼, and 2q-periodic when pq ∈ 𝕆.
On the other hand, the induced temporal phase sequence, 𝜑n;s,m,
is always m-periodic because Equations (7) and (8) ensure that
sm ∈ 𝔼.[69]

3.2. Spectral Talbot Effect

The expression of the temporal Talbot phases given by Equa-
tion (6) satisfies a Talbot condition, that is, its expression is
isomorphic to the spectral Talbot phase, given by Equation (4),
necessary to produce a temporal Talbot effect. We refer to this

mathematical symmetry as the time/frequency duality (more
generally, the Fourier duality) of the Talbot effect.[69] On the
basis of this duality, a spectral version of the phenomenon,
represented in Figure 4b, can then be observed in the fre-
quency domain. In particular, when the temporal phase-shift,
𝜑n;s,m, (see Equation (6)) is introduced to the n-th pulse of a
train, originally free of pulse-to-pulse phase variations, the
FSR of its frequency comb spectrum is divided by the integer
factor m.
For a practical implementation on optical pulses, the use of

cross-phase-modulation with a continuous parabolic pump pulse
train was first proposed,[60] and subsequently demonstrated.[66]

An alternative, convenient practical implementation involves the
use of an electro-optic temporal phase modulator driven by a
periodic step-like modulation function –for example, generated
from an electronic arbitrary waveform generator– that follows the
exact temporal phase profile prescribed by the theory of Talbot
effect.[62]

Similarly to the temporal Talbot effect, the output FSR-divided
comb acquires a line-to-line spectral phase profile, 𝜙k;p,q, given by
Equation (4) (see Figure 4b), where the value of the parameter p
is again determined by Equation (8).
A spectral version of the Talbot carpet can be represented, ob-

taining a picture similar to the one depicted in Figure 5, with the
appropriate variable changes, p ← s, q ← m, t ← 𝜈 and tr ← 𝜈r . A
more detailed representation of the formation of spectral Talbot
images and sub-images is shown in Figure 4b.
The periodicity of the Talbot phases in the spectral Talbot ef-

fect is now governed by the parity of the product sm. In particu-
lar, if reduced modulo 2𝜋, the applied temporal phase sequence,
𝜑n;s,m, ism-periodic when sm ∈ 𝔼, and 2m-periodic when sm ∈ 𝕆,
while the induced spectral phase sequence, 𝜙k;p,q, is always q-
periodic.[69]

3.3. Transformations in the Talbot Carpet

The application of a specific Talbot phase can be interpreted as
a displacement from one point in the Talbot carpet to a differ-
ent one. This visual way of interpreting the effect is particularly
useful to picture the transformations involved in the model for
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Figure 6. Manipulation of Talbot phases described as transformations in
the Talbot carpet. The temporal phase 𝜑n;s,m applied to a train of pulses
with period tr (top) produces the sub-image s∕m of a fractional spectral Tal-
bot effect (bottom). Moreover, the output train behaves as the sub-image
p∕m of a “virtual” temporal Talbot carpet with input period mtr (as illus-
trated in the top figure). Note that, in general, p ≠ s; in the given example,
s = 2 and m = 3, resulting in p = 5.

periodicity control that is at the core of our work reported here,
as detailed in the following section.
To illustrate this, let us consider a train of pulses with period

tr , to which we apply a temporal Talbot phase 𝜑n;s,m (from Equa-
tion (6)), satisfying a spectral Talbot condition for the pair {s, m}.
Figure 6 shows the effect of such a phase transformation along
the spectral and temporal amplitude Talbot carpets. The applied
temporal phase divides the input FSR bym (as shown in the bot-
tom plot of Figure 6), and this is equivalent to ‘transporting’ the
plane 0 to the plane s∕m in the spectral carpet. The outcome of
this TPM is then a spectral Talbot effect. The input pulse period
remains unaltered, but the applied temporal phase emulates the
effect of dispersive propagation of a virtual pulse train with orig-
inal period mtr , to the temporal sub-image p∕m (as shown in the
top plot of Figure 6). This corresponds to a spectral phase 𝜙k;p,m
(from Equation 4), acquired by the FSR-divided comb. The ap-
plied temporal phase has then the effect of selecting a sub-image,
p∕m, in a virtual temporal carpet where the period of the virtual
pulse train at the input (plane 0) ism times the period of the real
pulse train under analysis (see Figure 6, top). Equivalently, this
corresponds to a displacement on the spectral carpet to a, gener-
ally different, sub-image s∕m. Note that while the denominatorm
is the same in both domains, in general, p ≠ s.[69]

The dual situation, i.e., temporal Talbot effect, would be pro-
duced by the SPF of a frequency comb with a Talbot phase se-
quence 𝜙k;p,q. In such case, the resulting transformations would
be the selection of the sub-image s∕q in a virtual spectral Talbot
carpet with an input FSR q times larger than that of the real comb
under analysis, and a displacement on the temporal carpet to the
sub-image p∕q.

4. Phase-Controlled Talbot Effects

The functional forms of the temporal and spectral Talbot phases
(Equations (4) and (6), respectively), and their relationship (Equa-
tion (8)), provide the key to achieve an arbitrary control of the
repetition period of a pulse train or a frequency comb. For this
purpose, one simply must find and apply the right recipe of Tal-
bot phases. In particular, one could select a specific Talbot image
or sub-image as the input signal, and then induce a displacement
to a different Talbot image or sub-image with the desired period
in the same carpet, obtaining the output signal. The transforma-
tions required to achieve such arbitrary control of periodicity are
detailed in this section.
Two different, though equivalent, methods can be designed to

arbitrarily set the repetition period of the train/comb of interest.
These twomethods differ by the order inwhich the specific Talbot
phases are applied.Wename themby “phase-controlled temporal
Talbot method” (Figure 7a) and “phase-controlled spectral Talbot
method” (Figure 7b), respectively.

4.1. Phase-Controlled Temporal Talbot Method

Here, we define a generalized version of the temporal Talbot ef-
fect, that is, a method to transform a train of optical pulses with
period tr into a new train with period rtr , where the multiplica-
tion factor of the repetition period, r, can be any irreducible frac-
tion, that is, r ∈ ℚ. In general, r is a rational number, such that
r = q−12 q1∀{q1, q2} ∈ ℕ and {q1, q2} is a co-prime pair. If the trans-
formation is entirely completed, in the frequency domain, this
translates into a division of the corresponding frequency comb
FSR by the factor r, that is, from 𝜈r = t−1r to r−1𝜈r . Different combi-
nations of temporal and spectral Talbot phases could be designed
to achieve the same multiplication factor; that is, different val-
ues of the parameters p, q, s, and m in Equations (4) and (6). We
describe the general solution of the problem and then provide
guidelines to achieve particular solutions that minimize the dis-
placement on the temporal Talbot carpet (corresponding to the
case of minimum required dispersion in a practical implemen-
tation).

4.1.1. General Solution with Perfect Phase Cancellation

The general phase-controlled temporal Talbot method, depicted
in Figure 7a, consists of the following four steps:

0. Input: The starting point is a pulse train with period tr ,
corresponding to a frequency comb with FSR 𝜈r = t−1r (Fig-
ure 7(a.0)). The goal is to achieve a train with period rtr , with
r ∈ ℚ, that is, r = q−12 q1∀{q1, q2} ∈ ℕ.

1. TPM1 (temporal phase modulation 1): The input train is tempo-
rally phase-modulated with the sequence 𝜑n;s1 ,q1

, correspond-
ing to a spectral Talbot condition s1∕q1 (see Equation (6)). The
resulting frequency comb has an FSR q−11 𝜈r , while the pulse
period remains equal to tr (Figure 7(a.1)).

2. SPF1 (spectral phase filtering 1): As a result of TPM1, the FSR-
divided comb acquires a spectral phase 𝜙k;p1 ,q1

(Figure 7(a.1)),
where p1 is given by Equation (7) (with s ← p1, p ← s1 and
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Figure 7. Methods to control the repetition period based on the time/frequency duality of the Talbot effect. a) Phase-controlled temporal Talbot method,
and b) phase-controlled spectral Talbot method (see text). TPM: temporal phase modulation; SPF: spectral phase filtering. In both cases, an input pulse
train with period tr (and corresponding input frequency comb with FSR 𝜈r) is redistributed into an output train with period q−12 q1tr∀{q1q2}𝜖ℕ (and
corresponding input frequency comb with FSR q−11 q2𝜈r).

q ← q1). This phase is cancelled by an all-pass frequency fil-
ter with the exact opposite phase profile, −𝜙k;p1 ,q1

, resulting
in a train of pulses with repetition period q1tr (Figure 7(a.2)).
Note that this process can be implemented as linear disper-
sive propagation, and the required amount of GVD, 𝛽2z, can
be calculated by substituting p ← p1, q ← q1 and tr ← q1tr in
Equation (3). At this point, the initial train of pulses, with pe-
riod tr , has been transformed into another train of pulses with
period q1tr with no pulse-to-pulse phase variations. If the de-
sired temporal period multiplication factor is integer, this is
the final step.

3. SPF2 (spectral phase filtering 2): The application of a second
spectral phase𝜙k;p2 ,q2

(corresponding to a temporal Talbot con-
dition p2∕q2) divides the temporal repetition period of the
train obtained after SPF1 by q2. If q1 and q2 aremutually prime
natural numbers, the overall effect is the multiplication of the
input pulse period by the fraction r = q−12 q1 (Figure 7(a.3)).

Note that, depending on the designed values of q1 and q2, this
factor can be either higher or lower than 1.

4. TPM2 (temporal phase modulation 2): Finally, since the train
of pulses obtained after SPF2 (Figure 7(a.3)) is a Talbot
sub-image of the train obtained after SPF1 (Figure (7a.2)),
there will be uncompensated pulse-to-pulse temporal phase
variations. These phases can be cancelled out by the applica-
tion of an additional TPM step with the sequence −𝜑n;s2 ,q2

,
where s2 is given by Equation (8) (with s ← s2, p ← p2 and
q ← q2). The inverse of the temporal periodmultiplication fac-
tor will then affect the FSR of the obtained output comb, be-
coming r−1𝜈r (Figure 7(a.4)).

The problem can be reduced to the calculation of four Talbot
conditions. Since there are, in general, several allowed values of
p (or s) for each value of q (or m),[69] many configurations of the
method are possible to achieve a desired value of r. In particular,
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Table 1. Phase-controlled temporal Talbot method, general solution.

Step 0. Input 1. TPM1 2. SPF1 3. SPF2 4. TPM2

Applied Talbot phase 𝜑n;s1 ,q1
−𝜙k;p1 ,q1

𝜙k;p2 ,q2
−𝜑n;s2 ,q2

s1 free p1 ← Equation (8) {s1, q1} p2 free s2 ← Equation (8) {p2, q2}

Pulse repetition period tr tr q1tr q−12 q1tr q−12 q1tr
Time domain

Free spectral range 𝜈r q−11 𝜈r q−11 𝜈r q−11 𝜈r q−11 q2𝜈r
Frequency domain

Figure 8. Numerical simulation of the phase-controlled temporal Talbot method (following the steps depicted in Figure 7a) with r = 5∕2. a) Normalized
instantaneous power, b) temporal phase, c) normalized power spectral density, and d) spectral phase. The phase profiles shown have been sampled at
the center of each pulse/line in order to facilitate the interpretation of the figure.

s1 and p2 are free parameters. Table 1 summarizes the general
solution of the phase-controlled temporal Talbot method, and
Figure 8 shows a step-by-step numerical simulation example,
illustrating the results of the application of the phase-controlled
temporal Talbot method to multiply the repetition period of a
pulse train by the factor r = 5∕2 = 2.5 (and the FSR of its cor-
responding frequency comb representation by r−1 = 2∕5 = 0.4).
In this simulation, Gaussian pulses with a full width at half
maximum equal to 30−1 times the pulse repetition period (nor-
malized to 1) are used for ease of interpretation. This produces
a frequency comb that remains mostly flat within the chosen
spectral representation window. Figure 9 shows the involved
transformations on the temporal Talbot carpet for the particular
simulated example (r = 5∕2).
The methodology outlined here allows for arbitrary control

of the repetition period of a pulse train, where the FSR of its
frequency comb representation is related to the achieved pulse

Figure 9. Transformations on the temporal Talbot carpet performed by
the phase-controlled temporal Talbot method. The shown example cor-
responds to r = 5∕2.

period (the obtained FSR is the exact inverse of the obtained pulse
period). Pulse period control techniques proposed to date based
on this methodology only deal with temporal period control;
consequently, they end with step 3 (Figure 7(a.3)) for fractional
pulse period multiplication/division, or step 2 (Figure 7(a.2)) for
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integer pulse period multiplication (see Section 5).[63–65] Step 4
(TPM2, Figure 7(a.4)) is only necessary if one wishes to obtain an
output pulse train free of pulse-to-pulse phase variations and/or
to control the comb FSR accordingly.
As a note on implementation, the two consecutive spectral

phase filtering steps, SPF1 and SPF2, can be combined into a sin-
gle one, imposing a total spectral phase 𝜙k;p2 ,q2

− 𝜙k;p1 ,q1

𝜙k;p2 ,q2
− 𝜙k;p1 ,q1

= 𝜎2
p2
q2
k2 − 𝜎1

p1
q1
k2

=
𝜎2q1p2 − 𝜎1q2p1

q1q2
k2 (10)

If this process is implemented as GVD propagation, the total
amount of dispersion can always be designed to be smaller than
the sum of the magnitudes of both dispersive propagation steps
taken independently. This is due to the fact that 𝜎2, the sign of
𝜙k;p2 ,q2

, can be chosen arbitrarily, and 𝜎1, the sign of 𝜙k;p1 ,q1
, is de-

termined by the sign of𝜑n;s1 ,q1
, which can be set arbitrarily as well.

All the applied transformations are phase-only manipulations.
This means that, except for typical insertion losses associated
to specific components in a practical system implementation,
the total energy of the original pulse train is fundamentally
preserved, obtaining an output pulse train where each indi-
vidual pulse has r times the energy of each individual input
pulse. Such transformations only affect the coherent part of the
processed signal, and do not have an impact on its incoherent
noise content. As a result, the noise content of the input signal,
relative to the energy content of its individual pulses, is reduced
when r > 1.[63] Furthermore, since each individual output pulse
is generated from the interference of many consecutive input
pulses, aperiodicity in the input signal resulting in variations
between input pulses (e.g., pulse-to-pulse intensity and timing
fluctuations) are averaged out in the output train.[82] These
interesting properties are reviewed in more detail in Section 5.

4.1.2. Particular Solution for Minimum Required Dispersion

As mentioned above, the only restrictions in setting the parame-
ters s1 and p2 are that s1 and q1 must be mutually prime and have
opposite parity, and that p2 and q2 must be mutually prime (see
Equation (6) and the related explanations). This implies that sev-
eral solutions to the method can be found for a desired period
multiplication factor, r = q−12 q1.
In particular, it is interesting to look for solutions that mini-

mize the total displacement on the temporal Talbot carpet, since
such solutions achieve aminimal required amount of dispersion.
From an implementation perspective, this is an attractive design
specification, as it minimizes the total propagation length and, in
turn, the associated propagation loss.
As per Equation (3) and Table 1, the magnitude of the total

required dispersion to achieve the desired period multiplication
factor is

2𝜋||𝛽2||z =
||||p2q2 −

p1
q1

||||(q1tr)2 (11)

Recall that the value of p1 is determined by the values of q1 and
s1.
From Equation (11), it can be demonstrated that for any q1 and

q2 coprime, there exist values of p1 and p2 that minimize the total
dispersion magnitude, and that this minimum value is

2𝜋||𝛽2||z =
q1
q2
t2r (12)

For details on the mathematical derivation leading to this re-
sult, as well as the guidelines to calculate the parameters s1 and
p2, see Appendix A.
It is interesting to note that, since q1 and q2 aremutually prime

naturals, the minimum dispersion defined by Equation (12) sat-
isfies a fractional temporal Talbot condition for the input period
tr (see Equation (3)). In particular, in the absence of the first tem-
poral phase modulation step, TPM1, the method will produce a
train of pulses with period q−12 tr .

4.2. Phase-Controlled Spectral Talbot Method

Here, we define a generalized version of the spectral Talbot effect,
that is, a method to transform an optical frequency comb with
FSR 𝜈r into a new comb with FSR r−1𝜈r , where the multiplication
factor of the FSR, r−1, is any irreducible fraction, that is, r ∈ ℚ.
Similarly to the temporal version of the method, if the transfor-
mation is entirely completed, in the time domain, this translates
into amultiplication of the corresponding pulse repetition period
by the factor r, that is, from tr = 𝜈−1r to rtr . Note that, for a con-
venient comparison, here we look for the inverse of the period
multiplication factor, in order to keep the definition of the pa-
rameter r consistent with the one given in themodel of the phase-
controlled temporal Talbotmethod; that is, r = q−12 q1∀{q1, q2} ∈ ℕ
and {q1, q2} is a co-prime pair.
This second version of the method achieves the same result as

the previously explained temporal method, but through transfor-
mations along the spectral Talbot carpet (Figure 7b). Once again,
the problem is reduced to calculating four Talbot conditions, and
just as in the phase-controlled temporal Talbot method, a num-
ber of specifications can be adjusted freely in the calculation of
the Talbot phases to achieve a desired value of r, leading to many
different possible values for the main design parameters.
In the following, we describe the general solution of the prob-

lem and then provide guidelines to achieve particular solutions
that minimize the displacement on the temporal Talbot carpet.

4.2.1. General Solution with Perfect Phase Cancellation

The phase transformations involved in the general phase-
controlled spectral Talbot method can be regarded as the Fourier-
dual phase manipulations of the transformations involved in the
general phase-controlled temporal Talbot method. The following
four steps summarize the method:

0. Input: The starting point of the method is a frequency comb
with FSR 𝜈r , corresponding to a train of optical pulses with
period tr = 𝜈−1r (Figure 7(b.0)).
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Table 2. Phase-controlled spectral Talbot method, general solution.

Step 0. Input 1. SPF1 2. TPM1 3. TPM2 4. SPF2

Applied Talbot phase 𝜙k;p2 ,q2
−𝜑n;s2 ,q2

𝜑n;s1 ,q1
−𝜙k;p1 ,q1

p2 free s2 ← Equation (8) {p2, q2} s1 free p1 ← Equation (8) {s1, q1}

Pulse repetition period tr q−12 tr q−12 tr q−12 tr q−12 q1tr
Time domain

Free spectral range 𝜈r 𝜈r q2𝜈r q−11 q2𝜈r q−11 q2𝜈r
Frequency domain

1. SPF1 (spectral phase filtering 1): The input comb is phase-
filtered with the sequence 𝜙k;p2 ,q2

. The resulting pulse train
has a period q−12 tr , while the comb FSR remains equal to 𝜈r
(Figure 7(b.1)).

2. TPM1 (temporal phase modulation 1): The acquired temporal
phase is cancelled by a phase modulation mechanism with
the opposite phase profile, −𝜑n;s2 ,q2

. The result is a flat-phase
comb with FSR q2𝜈r (Figure 7(b.2)). If the desired FSR multi-
plication factor is integer, this is the final step. The parameter
s2 is given by Equation (7) (with s ← s2, p ← p2 and q ← q2).

3. TPM2 (temporal phasemodulation 2): A second temporal phase
𝜑k;s1 ,q1

divides the FSR by q1. If q2 and q1 are mutually prime
natural numbers, the overall effect is the division of the input
FSR by the rational factor r = q−12 q1, resulting in r−1𝜈r (Fig-
ure 7(b.3)). Again, this factor can be higher or lower than 1.

4. SPF2 (spectral phase filtering 2): The residual spectral phases,
acquired due to the application of TPM2, can be cancelled
out by the application of an additional all-pass filtering step,
corresponding to −𝜙k;p1 ,q1

, where p1 is given by Equation (7)
(with s ← p1, p ← s1 and q ← q1). The obtained pulse period
will then be equal to rtr .

Similarly to the temporal case, the methodology outlined here
allows for arbitrary control of the FSR of a frequency comb, where
the pulse period of its temporal train representation is related to
the achieved FSR (the obtained pulse period is the exact inverse
of the obtained FSR). FSR control techniques proposed to date
based on this methodology only deal with spectral period con-
trol; consequently, they end with step 3 (Figure 7(b.3)) for frac-
tional FSR multiplication/division, or step 2 (Figure 7(b.2)) for
integer FSR multiplication (see Section 5).[67] Step 4 (TPM2, Fig-
ure 7(b.4)) is only necessary if one wishes to obtain an output fre-
quency comb free of line-to-line phase variations and/or to con-
trol the temporal pulse period accordingly.
Table 2 summarizes the general solution of the phase-

controlled spectral Talbot method, and Figure 10 shows the in-
volved transformations on the spectral Talbot carpet for a partic-
ular example with r−1 = 5∕2.
As a note on implementation, the two consecutive phase mod-

ulation steps, TPM1 and TPM2, can be combined into a single
one, imposing a total temporal phase 𝜑n;s1 ,q1

− 𝜑n;s2 ,q2 .

𝜑n;s1 ,q1
− 𝜑n;s2 ,q2

= −𝜎1
s1
q1
n2 + 𝜎2

s2
q2
n2

= −
𝜎1q2s1 − 𝜎2q1s2

q2q1
k2 (13)

Figure 10. Transformations on the spectral Talbot carpet performed by
the phase-controlled spectral Talbot method. The shown example corre-
sponds to r−1 = 5∕2.

where 𝜎1, the sign of 𝜑n;s1 ,q1
, can be chosen arbitrarily, and 𝜎2, the

sign of 𝜑n;s2 ,q2
, is determined by the sign of 𝜙k;p2 ,q2

, which can be
set arbitrarily as well.
Conservation of energy ensures that the output comb lines

have r−1 times the energy of the individual input lines. This en-
ergy redistribution only affects the coherent components of the
input signal that satisfy the designed Talbot conditions, leading
to an effect of noiseless spectral amplification of the individual
output comb lines when r < 1.[67]

4.2.2. Particular Solution for Minimum Required Dispersion

Since the two spectral phase filtering steps, SPF1 and SPF2, are
not consecutive in the phase-controlled spectral Talbot method,
the total required dispersion is obtained by adding the magni-
tudes of both dispersion steps (i.e., without sign).

2𝜋||𝛽2||z =
p2
q2
t2r +

p1
q1

(
q1
q2
tr

)2

(14)

In this situation, the minimum displacement in the tempo-
ral Talbot carpet is achieved by minimizing each individual dis-
placement induced by SPF1 and SPF2, that is, by imposing p2 = 1
(s2 is then obtained from Equation (8)), and setting s1 to ob-
tain p1 = 1 using Equation (8). The minimum dispersion writes
then

2𝜋||𝛽2||z =
q1 + q2
q22

t2r (15)
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4.3. Practical Considerations of Talbot-Based Methods

4.3.1. Limits of the Multiplication Factor

There is a lower limit to the designed period multiplication fac-
tor, imposed by the ratio of the pulsewidth to the initial pulse
period. In short, the output pulse period must be long enough
to accommodate the duration of consecutive output pulses. Con-
sidering that in Talbot-based period control methods, the output
pulses preserve the temporal shape of the input ones, if Δt is the
full-width pulse duration, the pulse period multiplication factor
r = q−12 q1 must satisfy the following condition:

q1
q2

≥
Δt
tr

(16)

This condition can be equivalently enunciated in the frequency
domain, where the limit now deals with the number of discrete
frequency components that fit within the pulse bandwidth. The
FSR multiplication factor r−1 = q−11 q2 must be such that the out-
put FSR fits within the signal bandwidth, corresponding to the
bandwidth of a single input pulse. If Δ𝜈 is the full pulse band-
width, the condition writes

q2
q1

≤
Δ𝜈
𝜈r

(17)

It should be noted that, fundamentally, there is neither an up-
per limit to the pulse period multiplication factor, r, nor a lower
one to the FSR multiplication factor, r−1; however, practical lim-
itations in the realization of the SPF and TPM processes may
limit the implementation of the method with high values of r or
low values of r−1, as these would increase the complexity of the
involved Talbot phases (e.g., requiring high values of dispersion
and/or the realization of complex temporalmodulation patterns),
as discussed in Section 4.3.2.
Regarding the accessible range of period multiplication fac-

tors, the studied method allows for the design of r factors that
can be expressed as an irreducible fraction of two natural num-
bers, that is, rational factors. Irrationalmultiplication factors can-
not be achieved by the proposed technique. Nonetheless, it is a
well-known result of number theory that any real number can be
approximated by the ratio of two integers with arbitrary precision.
This is known as the Diophantine approximation. Hurwitz’s the-
orem establishes an upper bound to such approximations[94]; for
every irrational number, 𝜉, there are infinite mutually prime in-
tegers u and v, such that||||𝜉 − u

v

|||| < 1√
5v2

(18)

This result suggests that the proposed method could approxi-
mate irrational period multiplication factors with high precision.

4.3.2. Considerations on Practical Implementation

We now study the specifics of the two processes involved in the
methods –SPF and TPM– from a practical implementation view-
point.

Spectral Phase Filtering: Temporal Talbot effect is typically in-
duced by linear propagation through a dielectricmedium exhibit-
ing second-order group velocity dispersion. This is due to the fact
that the different temporal Talbot conditions are achieved by a
quadratic spectral phase of a certain curvature.[58] Optical fibers
provide a good approximation to second-order dispersion. While
these approximations lose accuracy for pulses with broad band-
widths, as higher order dispersion effects become significant,[95]

it is possible to design specific dispersion compensating devices
and/or propagation media where these high-order dispersion
terms are engineered to provide an overall quadratic spectral
phase over the entire pulse bandwidth.[96]

It is important to note that the amount of dispersion, required
to induce a temporal Talbot condition, scales with the square
of the pulse period (see Equation (3)). This means that lower
repetition rate trains will require longer propagation distances
in order to produce a given Talbot image, for a fixed value of the
second-order dispersion coefficient of the medium, 𝛽2. For ex-
ample, considering a standard single-mode fiber SMF-28, the
nominal value of second-order chromatic dispersion at a central
wavelength of 1550 nm is ≈17 ps nm−1 km−1, with a typical
attenuation of 0.275 dB km−1. A repetition rate multiplication
factor of 2 for a 10 GHz rate pulse train would then require a fiber
propagation length of approximately 36 km, with an associated
loss of approximately 10 dB (corresponding to a linear power
reduction factor of 10). Propagation loss can be mitigated by the
use of special fibers, such as dispersion-compensating fibers,
which can be designed to introduce larger amounts of dispersion
in shorter propagation lengths. Moreover, linearly chirped fiber
Bragg gratings and superimposed linearly chirped fiber Bragg
gratings further reduce the required propagation lengths by or-
ders of magnitude.[96,97] These are periodic structures, capable of
achieving large amounts of second-order dispersion over broad
frequency ranges, and with overall losses that can be below the
1-dB level; for example, a few meters of linearly chirped fiber
Bragg grating can compensate the dispersion introduced by
hundreds of km of SMF-28 over a frequency bandwidth exceed-
ing several THz, thus substantially reducing the loss associated
to the propagation of light in the medium.[82]

In this context, it is also interesting to ask which of the two
realizations of the method offers an optimal solution with min-
imum required dispersion. By comparing the minimum disper-
sion values in Equations (12) and (15), it is easy to verify that
the phase-controlled temporal Talbot method offers a solution
with lower dispersion than the phase-controlled spectral Talbot
method for integer pulse period or FSR multiplication factors
(i.e., for q1 = 1 and/or q2 = 1). However, for strictly fractional
multiplication factors (i.e., for {q1, q2} > 1) the phase-controlled
spectral Talbot method achieves lower dispersion. For a detailed
demonstration of this finding, see Appendix B.
Finally, it is important to note that Talbot phases are inher-

ently discrete, that is, the applied phase must be constant over
each period of the initial signal, otherwise distortion will be in-
duced on the signal representation in the dual domain. In fact,
temporal Talbot effect can be achieved through a especially de-
signed all-pass filter with a discrete phase profile, introducing
a line-by-line spectral Talbot phase sequence.[61] On the other
hand, optical fibers and linearly chirped fiber Bragg gratings in-
troduce continuous spectral phase variations. These continuous
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phases represent a good approximation to their discrete counter-
part in the case of optical frequency combs, as the linewidth of the
comb lines is generally narrow enough to neglect any continuous
phase variations occurring within each comb line. In general, the
linewidth of a frequency comb increases when aperiodicities are
introduced across its temporal pulse train representation.[70] For
instance, a sequence of pulses with finite duration will have a
comb representation with a relatively broad linewidth. Temporal
Talbot effect of such a sequence, implemented through continu-
ous (dispersive) spectral filtering, will result in distortion of the
individual output pulses.[98]

Temporal Phase Modulation: The TPM profiles employed in
the described methods are sequences of constant phase levels,
applied pulse to pulse. This is the form of an ideal temporal Tal-
bot phase, that is, flat within each individual pulse. These phase
sequences can be generated electronically and introduced to the
train of pulses through electro-optical phase modulation.[63–65]

The limiting factor in this implementation is the available elec-
tronic bandwidth for arbitrary waveform generation (typically in
the range of tens of GHz).
A possible solution to overcome this limit would be to avoid

the use of electro-optic components and to implement the Talbot
phases optically. In order to do this, one could use a nonlinear
effect with properly shaped optical pump pulses to imprint the
desired Talbot phase in the train to be processed. Spectral Talbot
effect induced by cross-phase modulation (XPM) with parabolic-
shaped optical pumppulses has been demonstrated.[66] In this sit-
uation, one should consider that conditions must be imposed so
that the continuous phase modulation closely approaches the de-
sired discrete Talbot phase distribution. In this regard, the pulses
of the input train should be sufficiently narrow so that to avoid
the introduction of significant chirp, associated to the tempo-
ral phase variations occurring within each pulse. This ultimately
leads to undesired distortion of the resulting comb spectral en-
velope. The specific conditions could be derived as the Fourier-
domain counterpart of the equivalent problem studied for tem-
poral Talbot effect.[98] This derivation is outside the scope of the
present work.
It is important to note that the temporal Talbot phase associ-

ated to the sub-image s∕m is m-periodic when reduced modulo
2𝜋 (assuming sm ∈ 𝔼). Additionally, since these sequences are
derived from quadratic expressions (see Equations (4) and (6)),
each period of the sequence is symmetric with respect to its
central sample. A single period of the temporal Talbot phase
associated to the sub-image s∕m can then be constructed with m
samples that take values in a set of ⌈m∕2⌉ levels. This is an im-
portant consideration for the design of the signal used to imprint
such a phase in the temporal modulation process. In the case
of electronics-based implementations (e.g., the voltage output
of an arbitrary waveform generator), this means that the vertical
resolution of the involved digital-to-analog converters must be
sufficient to encode ⌈m∕2⌉ voltage levels, and the available depth
of memory must be sufficient to store m samples. For TPM real-
izations based on nonlinear effects, these considerations relate to
the period and peak power of the pump signal used to excite the
nonlinearity. In this context, Maram et al. numerically studied
the tolerance in the precision of the pump power level for spectral
Talbot effect based on XPM, concluding that higher FSR division
factors require pump signals that resemble more accurately the

ideal profile of the desired temporal Talbot phase,[99] a finding that
was later demonstrated experimentally by Lei et al.[66] In the case
of electro-optical TPM implementations of spectral Talbot effect,
Malacarne et al. numerically studied the robustness against de-
viations from the ideal Talbot phase patterns, reaching a similar
conclusion.[62]

5. Review of Experimental Work on
Energy-Preserving Signal Processing of Periodic
Waveforms

Several methods for pulse repetition rate and comb FSR control
based on the theory outlined in this paper have been proposed
in the last few years.[60–68] As described above, these involve a
combination of specifically designed TPM and SPF operations;
however, they generally end with step 3 of the complete method-
ology described in Section 4. This section reviews experimental
demonstrations of such methodology, as well as applications to
problems beyond the control of the repetition period. Interesting
features of these experimental demonstrations, such as their im-
pact on the noise content of the involved signals, are commented.

5.1. Energy-Preserving Pulse Period Control by Talbot Effect

Integer temporal Talbot effect was first proposed by Jannson
et al., as a method to transmit a periodic temporal signal through
long distances, avoiding the associated high levels of chromatic
dispersion that would otherwise severely distort the waveform.[57]

The phenomenon was later observed experimentally by Andrek-
son in the propagation of picosecond pulse trains through fiber
lengths comparable to those covered by telecommunication sub-
marine cables[100] (first experimental results shown in Figure 11).
It should be noted that in these demonstrations, the period
of the signal of interest was not modified, as integer temporal
Talbot effect merely reconstructs the input waveform, preserving
its periodicity.
Subsequently, fractional temporal Talbot effect (depicted in

Figure 1(a.1)) was demonstrated in optical fibers[101,102]; Figure 12
shows the results of an experiment byArahira et al., inwhich frac-
tional temporal Talbot effect of a mode-locked laser signal was
observed by propagation through dispersive fibers. Notice that
in these early experiments, no connection was still made with
the fractional Talbot self-imaging effect observed in the problem
of diffraction of periodic spatial objects. Later on, realizations of
temporal Talbot self-imaging using linearly chirped fiber Bragg
gratings (LCFBG) for lossless pulse period division –pulse rep-
etition rate multiplication– were proposed,[103] and experimen-
tally demonstrated.[104] Figure 13 shows a set of pioneering re-
sults by Longhi et al.,[104] where a properly designed LCFBG was
used to multiply the repetition rate of a mode-locked sequence of
pulses by a factor 16 through fractional temporal Talbot effect in
a LCFBG.
Fractional temporal Talbot effect has since been widely used as

a very simple and efficient way for increasing the repetition rate
of mode-locked lasers, even enabling the first demonstrations of
stable pulse trains with repetition rates in the THz regime, re-
ported by Meloni et al.,[105] as shown in Figure 14.
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Figure 11. Evolution of a 4 GHz periodic pulsed signal in its propagation
along 9000 km of optical fiber (traces captured by a streak camera). These
results reveal the first experimental observation of integer temporal Talbot
images, where the original period and pulse shape are reconstructed, here
occurring at multiples of 3000 km. Note how, even in this early demon-
stration, hints of repetition rate division by 3 – corresponding to fractional
temporal Talbot images – are observed at distances of the form 3000p∕q
km with q = 3. Reproduced with permission.[100] Copyright 1993, Optical
Society of America.

The main advantage of this approach for pulse repetition rate
multiplication is its simplicity, as the required SPF transforma-
tion can be implemented via a length of optical fiber or a LCFBG.
The main drawback of this technique is its limited versatility:
Only pulse period division (pulse repetition rate multiplication)
by an integer factor is achievable. This is related to the fact that
the power spectrum of the processed pulse sequence (including
the original FSR) remains unaltered through the process, and as a
result, the output rate-multiplied pulse trains acquire determin-
istic pulse-to-pulse phase variations (mathematical expressions
formalized in ref. [69] and explained in Section 3).
The use of phase-controlled Talbot effects, involving an

adequate pulse-to-pulse phase conditioning of the pulse train
of interest, for example, through an electro-optical TPM pro-
cess, allowed for a full control of the repetition rate (depicted in
Figure 1(b.1)). As described in Section 4, these temporal phase se-
quences are related to the residual pulse-to-pulse phase variations

Figure 12. Experimental demonstration of fractional temporal Talbot ef-
fect by propagation of a mode-locked pulse train through dispersive fiber.
The input repetition rate was approximately 49GHz, the second-order fiber
dispersion was 17.8 ps nm−1 km−1, resulting in a Talbot length of 2.87 km.
The shown traces correspond to the second-harmonic autocorrelation of
the optical signal (10 ps div−1): a) Input pulse train, b) output signal after
720 m of fiber (repetition rate multiplication by 4), c) output signal after
930 m of fiber (repetition rate multiplication by 3), and d) output signal af-
ter 1.425 km of fiber (repetition rate multiplication by 2). e) Output signal
after 2:87 km of fiber, corresponding to the Talbot length (recovery of the
original repetition rate). a–e) Reproduced with permission.[101] Copyright
1998, IEEE.

Figure 13. Experimental demonstration of fractional temporal Talbot ef-
fect on LCFBGs. a) Numerical and b) experimental autocorrelation traces
of a 2.5 GHz pulse train (dashed line) and a 40 GHz pulse train (solid
line), obtained by the fractional temporal Talbot effect on an LCFBG, cor-
responding to a 16-fold multiplication of the input repetition rate. Repro-
duced with permission.[104] Copyright 2000 Optical Society of America.

acquired by rate-multiplied pulse trains after fractional temporal
Talbot effect. Based on this methodology, energy-preserving
pulse period multiplication (repetition rate division) of optical
pulse trains by integer factors was demonstrated,[63] and later
extended to the general case of pulse period multiplication and
division by fractional factors.[64,65] The work carried out byMaram
et al., illustrated in Figure 15, demonstrated energy-preserving
pulse repetition period multiplication by temporal Talbot effect
with phase-conditioned pulse trains for the first time.
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Figure 14. Experimental and numerical autocorrelations of a 2.5 THz
pulse sequence obtained by 250-fold repetition rate multiplication of a
10 GHz mode-locked laser via the fractional temporal Talbot effect on
a single-mode optical fiber. Reproduced with permission.[105] Copyright
2005, IET.

5.1.1. Additional Properties and Extended Functionality

The used phase-only wave transformations in periodicity control
of repetitive waveforms, particularly the mentioned operations
based on the temporal Talbot effect, imply that the energy of the
processed signals is ideally preserved. Furthermore, the wave
operations upon which these methods are built (TPM and SPF)
can be tailored to produce a user-defined redistribution of the en-
ergy content of the signal of interest without affecting the power
temporal or spectral densities of any random noise uncorrelated
with the signal. This way, if the energy of an input pulse train
is redistributed to generate an output pulse train with a longer
pulse period, the energy per output pulse will be higher than the
energy per input pulse, resulting in an effect of local “passive”
amplification of the individual pulses (this effect can be observed
in Figure 15). Interestingly, this is achieved without increasing
the noise content of the signal. This is in sharp contrast to active
gain processes (e.g., as implemented by conventional ampli-
fiers), which not only amplify the noise propagating alongside
the signal of interest, but also inject their own external noise
contribution, resulting in an unavoidable degradation of the
signal-to-noise ratio. Noiseless amplification of periodic inten-
sity waveforms was demonstrated using these techniques in so-
called “Talbot amplifiers,” including both integer and fractional
pulse period multiplication factors. Figure 16 shows relevant
examples of noise mitigation in a Talbot amplifier, reported by
Maram et al.[63]

Another interesting characteristic of period control techniques
based on energy redistribution is their intrinsic capability to
equalize the differences between consecutive pulses. There is no
one-to-one relationship between the pulses of an input sequence
and the corresponding output pulses obtained by temporal Tal-
bot effect. This is because each output pulse is a product of the
interference betweenmany consecutive input pulses, temporally-
stretched by dispersive propagation. As a result, differences be-
tween input pulses are averaged out in the obtained output train;
this is known as the self-healing property of the Talbot effect.
These aperiodicities include pulse-to-pulse intensity variations
and timing jitter (pulse-to-pulse variations of the repetition rate).
The impact of both integer and fractional temporal Talbot

self-healing on the pulse-to-pulse intensity fluctuations of oth-

Figure 15. Experimental demonstration of energy-preserving pulse period
multiplication by integer factors through the temporal Talbot effect with a
phase-conditioned input pulse train. The input pulse trains are shown by
the dotted blue lines, while the rate-divided output pulse trains are shown
by the solid red lines. The parameter r here refers to the ratio of the output
peak power to the input peak power (closely following the designed period
division factor, m). a) Pulse period multiplication of a train of Gaussian-
like pulses by factors of 2, 5, 15, and 27 (parameterm in the shown plots).
b) Detail of the periodmultiplication process by 15 implemented on a train
where the pulses are reshaped, proving that the method is insensitive to
the temporal shape of the input pulses. Reproduced under the terms of
the CC-BY Creative Commons Attribution 4.0 International License (http:
//creativecommons.org/licenses/by/4.0/).[63] Copyright 2014, Macmillan
Publishers Limited (now Springer Nature).

erwise periodic pulse trains has been the subject of numerous
studies.[107–110] In this context, the temporal Talbot effect has
been put to practical use for the design of optical clock re-
covery systems, as demonstrated by Pudo et al. (experimental
realization shown in Figure 17). Here, the variations in the
instantaneous power of a pulsed data-modulated signal, ac-
quired as a result of the introduced data pattern, are equalized,
giving rise to a periodic pulse train at a repetition rate match-
ing the clock frequency.[88] This effect is enhanced if Talbot
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Figure 16. Experimental demonstration of noise mitigation by energy-
preserving pulse period multiplication in a Talbot amplifier. a–c) Time
traces measured by a sampling oscilloscope without averaging of: a) a
noisy pulse with an optical signal-to-noise ratio of 5 (PM-OFF refers to the
fact that the TPM process is not operational), b) the pulse amplified by an
erbium-doped fiber amplifier (EDFA) with a linear gain factor of 15, and c)
the pulse after energy-preserving pulse period multiplication (repetition
rate division) by a factor of 15, matching the gain of the amplifier used in
(b) (PM-ON refers to the fact that the TPM process is operational). Repro-
duced under the terms of the CC-BY Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/).[63]

Copyright 2014, Macmillan Publishers Limited (now Springer Nature).

Figure 17. Experimental demonstration of base-rate clock recovery from
a sequence of pulses with on–off keying (0/1-binary amplitude) data mod-
ulation through the temporal Talbot effect. a) Measured eye diagram of
the input data sequence, b) measured eye diagram of the recovered clock
signal, and c) numerical simulation of the clock recovery process. Repro-
duced with permission.[88] Copyright 2017, IEEE.

Figure 18. Experimental demonstration of sub-harmonic clock recovery
from a sequence of pulses with on–off keying (0/1-binary amplitude) data
modulation through temporal Talbot amplification. The recovered clock
signal is a decimated version of the base-rate clock by an integer fac-
tor (parameter m in the shown plots). a–c) Temporal trace and eye dia-
grams of recovered clocks at 1/2 (a), 1/3 (b), and 1/4 (c) of the signal’s
bit rate. It can be seen how the amplitudes of the obtained clock pulses
become more equalized as the decimation factor increases. Reproduced
with permission.[89] Copyright 2015 Optical Society of America.

amplification is used. In this case, periodic trains at repetition
rates corresponding to a decimation of the clock frequency –so-
called “sub-harmonic” clock recovery– are generated, featuring
output pulses with increased contrast ratios with respect to the
pulses obtained in the base-rate case, as demonstrated by Maram
et al. (experimental realization show in Figure 18).[89]

A similar effect is observed in pulse trains with timing jit-
ter after experiencing temporal Talbot effect. This phenomenon
was predicted by Fernández-Pousa et al.,[111–113] with further the-
oretical analysis by Pudo et al.,[108,114] and experimentally demon-
strated by Oiwa et al.[115] Later on,Maram et al. demonstrated that
the mitigation of timing jitter is further enhanced in the case of
temporal Talbot amplification.[82]

Other interesting applications of pulse repetition rate control
via temporal Talbot effect include signal processing systems
based on discrete Fourier transforms[116–118] (experimental exam-
ples by Xie et al. shown in Figure 19), wave-based implementa-
tions of prime number factorization algorithms[119] and precise
calculation of the dispersion parameters of optical media.[103,120]

It should be noted that all of these operations require the
propagation of an optical pulse train through a transparent
medium (acting as a spectral phase filter) introducing a specific,
fixed amount of second-order group velocity dispersion. It is gen-
erally difficult to modify the dispersion parameters of an optical
medium once it has been designed, especially for large modifi-
cations (e.g., doubling or halving the total amount of introduced
dispersion), as these parameters are related to the physical char-
acteristics of the medium. This limits the reconfigurability of
these techniques. In order to overcome this limitation, a solution
was proposed where a series of dispersive media are inter-
connected by optical switches, allowing to modify the total
dispersion length traversed by the input pulse train of
interest.[121] Alternatively, the use of programmable filters,
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Figure 19. Generation of ultrafast pulse sequences with a user-defined en-
velope via the temporal Talbot effect of pulse trains with slow-rate ampli-
tude modulation. 1) Modulated input pulses; 2) obtained output pulse se-
quence with: a) parabolic envelope, b) square envelope, c) triangular enve-
lope, and d) triangular envelope with 50% duty cycle. The envelope of the
obtained pulse sequence is determined by the Fourier transform of the ap-
plied slow-rate amplitude modulation. Reproduced with permission.[118]

Copyright 2018, IEEE.

where the discrete spectrum of the input periodic pulse train
is phase-shaped line by line, was used for reconfigurable pulse
repetition rate multiplication.[122] In this approach, the pro-
grammable filter is configured to introduce the spectral phase
profile associated to the desired temporal Talbot sub-image to
the input periodic signal, being able to switch between different
temporal Talbot conditions by simply reprogramming the filter’s
transfer function (see experimental results by Caraquitena et al.
in Figure 20). The main drawbacks of these approaches are
their limited reconfiguration speed and the fact that they rely on
bulky optical setups. Another solution to the reconfigurability
problem, allowing for faster reconfiguration speeds in a more
compact setup, consists of modifying the temporal phase profile
of the input pulse train prior to dispersive propagation, following
a scheme similar to that used in phase-controlled Talbot effects.
Indeed, modifying the electrical signal used in conjunction with
an electro-optical device to introduce modulation to an optical
waveform is a simple task with modern electronic and radio-
frequency waveform generation equipment. Advanced designs
based onTalbot theory have been proposed for implementation of
electronically-programmable pulse repetition rate multiplication
techniques, where the dispersive medium responsible for tem-
poral Talbot effect is fixed, and the achieved output repetition rate

can be tuned by modifying the electrical signal driving the phase
modulator.[123,124]

Finally, it is worth mentioning that Talbot-based methods
have also been used for energy-preserving manipulation of
continuous-wave (CW) signals. R. Fernández-Pousa et al. demon-
strated efficient CW-to-pulse conversion through a methodology
based on the reviewed energy redistribution methods[125] (exper-
imental examples shown in Figure 21). This can be interpreted
as the time-domain counterpart of the Talbot array illuminator
(TAI), a process by which a plane wave is focused into a set of
localized bright spots through the interplay of a spatial phase
mask and free-space propagation.[91] As such, the process was
referred to as a temporal Talbot array illuminator (T-TAI). Ad-
ditionally, CW-seeded frequency-shifted loop cavities have been
demonstrated to produce mode-locked pulse trains by emulating
temporal Talbot conditions thanks to the interplay between the
cavity roundtrip time and a frequency-shifting element.[68,126,127]

Such laser architectures allow for generation of pulse trains
from CW sources, with repetition rates tunable in the MHz and
GHz regimes.

5.2. Energy-Preserving Comb FSR Control by Talbot Effect

Fractional spectral Talbot effect was proposed,[60,61] and subse-
quently demonstrated,[62,66] as the Fourier-dual phenomenon of
the fractional temporal Talbot effect. As explained in Section 3,
this can be utilized for reduction (division) of the FSR of an opti-
cal frequency comb by an integer factor through the application
of a periodic pulse-to-pulse TPM to the pulse train representa-
tion of the comb. The first experimental demonstrations of TPM-
induced fractional spectral Talbot effect of a frequency combwere
reported by Malacarne et al. (examples shown in Figure 22). In
these examples, the TPM process is achieved through electro-
optical phase modulation driven by a voltage waveform shaped
after the necessary Talbot phase pattern. It is also possible to in-
duce this effect to a frequency comb through cross-phase mod-
ulation between its pulse train representation and a parabolic-
shaped temporal pulse with a suitable level of peak power.[60,66,99]

In all these cases, the energy of the original frequency comb is
ideally preserved through the process (aside from practical in-
sertion losses) and simply redistributed to build up the output
FSR-divided comb.
Similarly to the previously mentioned methods for pulse

period control based on the temporal Talbot effect, this approach
for FSR manipulation lacks versatility inasmuch as the allowed
wave operations are limited to division of the FSR by integer
factors. Furthermore, only the power spectrum of the comb is
modified by the applied TPM operation, while the instantaneous
power of the associated pulse train (including the original pulse
period) remains unaffected. As a result, the output FSR-divided
frequency combs acquire deterministic line-to-line phase vari-
ations (mathematical expressions formalized in ref. [69] and
explained in Section 3).
The use of phase-controlled Talbot effects, involving an

adequate line-to-line phase conditioning of the frequency
comb of interest (e.g., by propagation through a properly-
designed second-order group-velocity dispersive medium) al-
lowed for a full control of the FSR (depicted in Figure 1(b.2)). As
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Figure 20. Reconfigurable pulse repetition rate multiplication by temporal Talbot effect in a programmable line-by-line pulse shaper spectral filter. a–
e) Oscilloscope traces (top) and associated radio-frequency spectra (bottom) of: a) the input pulse train of interest and b–e) rate-multiplied pulse
trains by factors 2, 3, 4, and 5, respectively (obtained by modifying the spectral phase profile introduced by the programmable filter). Reproduced with
permission.[122] Copyright 2007, Optical Society of America.

Figure 21. a–f) Generation of pulse sequences from CW light by temporal energy redistribution using temporal Talbot phases to achieve duty cycles
of 1/2, 1/3, 1/6, and 1/10 (a–d), the temporal counterpart of a Fresnel lens (e), and a parabolic time lens (f). 1) Temporal phase sequences, 2) optical
spectra of the obtained pulse trains, 3) instantaneous power traces of the obtained pulse trains. Reproduced with permission.[125] Copyright 2017, Optical
Society of America.

described in Section 4, these spectral phase sequences are related
to the residual line-to-line phase variations acquired by FSR-
divided combs after fractional spectral Talbot effect. Based on this
methodology, energy-preserving arbitrary FSRmanipulation was
demonstrated by Romero Cortés et al. (experimental examples
shown in Figure 23).[67] Furthermore, a scheme for user-defined
frequency comb generation with FSR reconfigurability over 6
orders of magnitude (from the kHz to the GHz regime) was
demonstrated.[68] This was achieved using an acousto-optic
frequency shifted feedback laser design for generation of a

frequency comb with a reconfigurable quadratic (dispersive)
spectral phase profile,[126] combined with Talbot TPM. Other
approaches for comb generation and FSR control relying on
nonlinear-optics schemes were also demonstrated.[49,50]

5.2.1. Additional Properties and Extended Functionality

As discussed in Section 5.1.1, the use of phase-only transfor-
mations translates into the preservation of the energy of the
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Figure 22. FSR division by integer factors (parameter m in the shown plots) through fractional spectral Talbot effect of an optical frequency comb with
an FSR of 10 GHz, induced by electro-optical temporal phase modulation. Reproduced with permission.[62] Copyright 2013, Optical Society of America.

Figure 23. a–d) FSR multiplication by factors r−1 = 3 (a), 4 (b), 1.5 (c), and 0.4 (d), induced by combinations of SPF and TPM (original FSR of the
input combs: a) 9.463 GHz; b,d) 9.451 GHz; and c) 7.717 GHz).[67] The output frequency combs preserve the envelope and frequency grid of the input
ones, and the spectral peak power of the comb lines is modified by the FSR multiplication factor. Adapted with permission.[67] Copyright 2018, American
Physical Society.

input comb. In particular, these FSR control methods based
on the spectral Talbot effect rely on the same wave operations
(SPF and TPM) used by the previously discussed pulse period
control methods. As such, they can produce a user-defined
redistribution of the energy content of the signal of interest
without affecting the power temporal or spectral densities of
any random noise uncorrelated with the signal. This way, if the
energy of an input frequency comb is redistributed to generate

an output comb with a larger FSR, the energy per output line
will be higher than the energy per input line, resulting in an
effect of local “passive” amplification of the individual comb
lines without increasing the noise content of the signal, in
sharp contrast to active gain processes (with their unavoidable
signal-to-noise ratio degradation). Romero Cortés et al. demon-
strated noiseless spectral amplification of optical frequency
combs using these techniques, even achieving extraction of

Laser Photonics Rev. 2019, 13, 1900176 1900176 (19 of 24) © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.lpr-journal.org


www.advancedsciencenews.com www.lpr-journal.org

Figure 24. Sub-noise extraction of frequency combs through noiseless
spectral amplification by spectral energy redistribution based on phase-
only wave operations.[67] a) Input comb affected by a level of amplified
spontaneous emission where the noise level reaches the spectral peak
power level of the comb lines. b) Spectral traces of FSR-multiplied combs
through energy redistribution (by factors r−1 = 2 (i), 3 (ii), and 4 (iii)),
where the comb lines are raised over the noise floor, increasing their vis-
ibility by the FSR multiplication factor (shown here in dB scale). Adapted
with permission.[67] Copyright 2018, American Physical Society.

frequency combs from underneath the spectral noise floor
when the noise level exceeded that of the comb lines (experi-
mental examples shown in Figure 24). It should be noted that
this method does not require prior knowledge of the frequen-
cies of the comb lines or the spectral extension of the comb
of interest.
It is interesting to note that the mentioned FSR control meth-

ods based on the spectral Talbot effect obtain output frequency
combs that preserve both the complex spectral envelope and the
frequency grid of the input combs. Furthermore, it was recently
demonstrated that spectral Talbot effects does not significantly al-
ter the level of phase noise on the reference frequency and FSR of
a frequency combprocessed throughTPM.[128] These are interest-
ing properties for applications that require stabilized frequency
combs, such as high-resolution spectroscopy and astronomical
measurements through laser-calibrated spectrographs.[3]

Finally, it is worth mentioning that these methods have also
been used for energy-preserving manipulation of the continu-
ous broadband spectra of isolated short pulses.[129] This can be
interpreted as the frequency-domain counterpart of the temporal
TAI, so-called spectral Talbot array illuminator (S-TAI). Romero
Cortés et al. used this methodology to reversibly redistribute the
spectrum of a short pulse into a periodic sequence of peaks and
gaps, leaving broad frequency bands of the pulse’s spectrum free
of energy (relevant results shown in Figure 25). This mechanism
has been exploited to demonstrate the first realization of phase-
preserving broadband invisibility cloaking.[129]

6. Discussions and Conclusion

In this work, we have presented an in-depth analysis of the fun-
damental theory behind signal processing methods for periodic-

Figure 25. Redistribution of a 500 GHz-wide continuous spectrum into a
periodic series of peaks and gaps through wave transformations identical
to those used in the phase-controlled spectral Talbot method.[129] a) Input
spectrum. b) Output spectrum. Reproduced with permission.[129] Copy-
right 2018, Optical Society of America.

ity control of repetitive temporal and spectral waveforms based
on Talbot effects. These methods inherently preserve the over-
all energy of the processed wave and perform the desired period
manipulation without affecting the features (duration and shape)
of the individual temporal pulses and spectral envelope of the
pulse train/frequency comb. In particular, we have derived the
complete set of energy-preserving transformations necessary to
achieve a prescribed, user-defined control of the temporal and
spectral periods of repetitive waveforms in both domains simul-
taneously. Previous works on Talbot-based waveform manipula-
tion have been reviewed and contextualized.
Themethods described in this work are particularly interesting

for applications that require the ability to precisely set the repeti-
tion rate of optical pulse trains, such as for generation and pro-
cessing of telecommunication signals, arbitrary optical and radio-
frequency waveforms, etc. Additionally, disciplines that rely on
manipulations of the FSR of frequency combs with high energy
efficiency could also benefit from the methods reported here. For
instance, energy-preserving FSR multiplication could produce
frequency combs with large frequency spacings (well into the
GHz regime) and improved side-lobe suppression, a feat of crit-
ical importance for comb-based astronomical measurements.[76]

Similarly, energy-preserving FSR division could readily enhance
the spectral resolution of methods for frequency comb-based
spectroscopy. A key advantage of the Talbot methods is that they
offer the additional capability to mitigate critical amplitude and
phase noise present in the original pulse trains and frequency
combs. Moreover, all the operations required by the Talbot meth-
ods are linear manipulations of the phase of a wave, along its two
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Fourier-dual domains of representation, for example, time and
frequency. This suggests the possibility to extend these methods
to any system or framework described by wave equations. In par-
ticular, these methods could be readily-applied to the space and
transverse momentum –angular spectrum– domains of optical
fields, by direct application of the space-time duality.[83] A similar
realization of the generalized Talbot method was reported to con-
trol the periodicity of repetitive images in two dimensions, even
allowing to tailor the spatial repetition periods associated to each
dimension independently.[130]

More generally, the operations involved in the reported meth-
ods would allow to implement arbitrary period control of sig-
nals outside the realm of optical waves. In fact, manifestations
of the Talbot effect have been reported across a wide variety
of wave regimes, such as radio-frequency waves,[131] acoustic
andmechanical waves,[132] X-ray diffraction,[133] matter waves,[134]

and quantum wavefunctions,[135] among others. Furthermore,
given the beneficial noise-reduction properties of the studied
processes,[63,65,67] purely computational versions of these meth-
ods could be envisioned to enhance signals and images affected
by noise through numerical signal processing operations.
Last but not least, as mentioned above, beyond their interest

for application to the control of repetitive waveforms, the out-
lined wave energy redistribution strategies could be generalized
to a wider variety of signal processing scenarios, such as for ma-
nipulation of arbitrary aperiodic signals.[125,129] Hence, the Talbot-
basedmethodology outlined and reviewed herein opens amyriad
of promising new avenues for advanced arbitrary energy-efficient
waveform generation, processing and control, of potential broad
practical interest.

Appendix A: Minimum Dispersion in the
Phase-Controlled Temporal Talbot Method

Equation (11) gives the dispersion magnitude required in
the phase-controlled temporal Talbot method. Renaming d :=
2𝜋|𝛽2|z
d =

||||p2q2 −
p1
q1

||||q21t2r (A1)

Equation (A1) rewrites as

||p2q1 − p1q2|| = q2
q1

d
t2r

(A2)

Bézout identity states that given two nonzero integers, q1 and
q2, with greatest common divisor c, there exist integers p2 and p1
such that[136]

p2q1 − p1q2 = c (A3)

where c is the smallest natural number that can be written as
p2q1 − p1q2 (note that the Bézout coefficients, p2 and p1, are not
unique, and every integer of the form p2q1 − p1q2 is a naturalmul-
tiple of c). Since q1 and q2 are mutually prime, their greatest com-

mon divisor is c = 1. Using Equation (A3) in Equation (A2), we
have the minimum value of d

dmin =
q1
q2
t2r (A4)

The minimum required dispersion is then fixed by the pe-
riod multiplication factor, r = q−12 q1, and the input temporal
period, tr . The associated Bézout coefficients, p2 and p1, that
satisfy Equation (A3) are determined by the standard extended
Euclidean algorithm.[136] Given the specifications for the input
period and the desired multiplication factor, r, the parameters
of the phase-controlled temporal Talbot method with minimum
dispersion can be obtained as follows:

0. Specifications of themethod: r = q−12 q1, and tr . Theminimum
dispersion is given by Equation (A4).

1. Determine p1 and p2 from Equation (A3) with c = 1, using the
standard extended Euclidean algorithm.[136]

2. Determine s1 from p1 and q1, using Equation (8).
3. Determine s2 from p2 and q2, using Equation (8).

Appendix B: Comparison of Dispersion
Requirements

Equations (12) and (15) give the minimum dispersion values
required by the phase-controlled temporal and spectral Talbot
methods, respectively. Dropping the constant multiplicative fac-
tor t2r on the right-hand side of Equations (12) and (15), and
renaming the remaining fractions dT and dS, respectively, we have

dT =
q1
q2

(B1a)

dS =
q1 + q2
q22

(B1b)

We can compare the fractions dT and dS by subtracting one
from the other or by dividing one by the other.

Proof 1

The difference between dS and dT writes

dS − dT =
q1 + q2 − q1q2

q22
(B2)

Since q2 is real and nonzero, the sign of this fraction is de-
termined by its numerator. In particular, if q1 = 1 and/or q2 = 1,
then q1 + q2 > q1q2, and dS > dT. On the other hand, if {q1, q2} >
1, then q1 + q2 < q1q2, and dS < dT.

Proof 2

The ratio of dS to dT writes

dS
dT

= 1
q1

+ 1
q2

(B3)
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Since q1 and q2 are positive and nonzero, if q1 = 1 and/or q2 =
1, then q−11 + q−12 > 1, and dS > dT. On the other hand, if {q1, q2} >
1, then q−11 + q−12 < 1, and dS < dT.
In conclusion, the phase-controlled temporal Talbot method

offers a solution with lower dispersion than the phase-controlled
spectral Talbot method when either the pulse-period or FSRmul-
tiplication factor is an integer (i.e., for q1 = 1 and/or q2 = 1).
However, for strictly fractional multiplication factors (i.e., for
{q1, q2} > 1) the phase-controlled spectral Talbotmethod achieves
lower dispersion.
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