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Abstract—The temporal Talbot effect comprises a set of self-
imaging phenomena in which a pulse train undergoes various co-
herence revivals after propagation through a dispersive medium.
Besides the intrinsic physical interest of the phenomenon itself, the
effect has found practical applications in various scientific areas. In
optical signal processing, the temporal Talbot effect has been used
to multiply the repetition-rate of periodic pulse sequences by inte-
ger factors. Because it operates coherently on the frequencies that
comprise a pulse train, the temporal Talbot effect has been shown
to mitigate noise such as reduction of pulse-to-pulse timing jitter
and amplitude variation, as well as real-time optical averaging. Re-
cently, there has been renewed interest in the temporal Talbot effect
due to its use in arbitrary repetition rate multiplication and division,
not just integer multiplication. Arbitrary repetition-rate control is
based on a suitable combination of temporal phase-modulation
and spectral-phase filtering using temporal Talbot conditions. By
adjusting the phase-modulation profile and group-velocity disper-
sion, the multiplication and division factors can be tuned to be any
desired values- fractional or integer. One of the main advantages
of this methodology compared to traditional approaches of repe-
tition rate control is its energy efficiency. Because temporal and
spectral phase filtering are lossless processes, pulse trains using
Talbot-based repetition rate control only suffer insertion loss from
the system. In this article, we first present an overview of the theory
behind temporal Talbot effects and then review recent work on its
application for realizing arbitrary control of the repetition-rate of
periodic optical pulses. This platform enables the creation of sim-
ple, versatile optical pulse sources for diverse applications where
customized repetition rates are necessary.

Index Terms—Optical fiber communication, optical pulse gen-
eration, pulse repetition-rate division, pulse repetition-rate mul-
tiplication, temporal phase modulation, temporal Talbot effect,
ultrafast optics.
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I. INTRODUCTION

T ECHNIQUES for the generation, control and manipula-
tion of periodic optical pulse trains, with repetition-rates

in the sub-gigahertz, gigahertz and beyond, have become in-
creasingly important for many scientific areas, including fiber
optic communications, materials processing, frequency comb
generation, nonlinear optics, photonic signal processing, opti-
cal sampling, and microwave/millimeter-wave photonics [1]–
[9]. This has motivated extensive research on the development
of new techniques for generating and controlling optical pulse
sequences. Passive or active mode-locking is one of the main
techniques for the generation of such optical pulses [10]–[16].
In active mode-locking, a cavity parameter is modulated elec-
tronically to force the laser to operate at the desired frequency
[10]–[13]. Therefore, active sources are ultimately limited by the
bandwidth of the electronics involved in the mode-locking pro-
cess. Additionally, even though commercial active mode-locked
lasers are presently available in the repetition-rate frequency be-
tween 5–42 GHz, it is difficult to achieve stable operation over a
continuous range within this set of frequencies [10], [17], [18].
Passive mode-locking techniques [14]–[16], on the other hand,
provide much more stable operation and offer the potential to
overcome the limitations of active methods, as they are not lim-
ited by electronic bandwidths. However, they typically require
a precise control of the optical properties of the laser cavity
and offer very limited flexibility to program or tune the output
repetition-rate.

A simple, cost-effective solution for arbitrary repetition-rate
control, at repetition-rates beyond those practically achievable
by conventional mode-locking, is to control the repetition-rate
of a fixed and stable optical source outside the laser cavity, with-
out having to modify the laser itself. To arbitrarily control the
repetition-rate of an optical pulse source, one needs to be able
to multiply and divide the original repetition-rate by any integer
and fractional factors, leading to an output train of pulses with
the desired repetition-rate, as shown in Fig. 1. This technique is
often also useful for optical systems where various synchronized
circuits are running at different repetition-rates, one circuit at
the rate of the laser source (reference rate), and other periph-
ery circuits at higher or lower rates [19]. To date, various rate
multiplication and division techniques have been developed for
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Fig. 1. Repetition-rate control of a fixed pulse laser through rate multiplica-
tion and division processes. M and D are multiplication and division factors,
respectively.

converting the repetition rates of pulse trains outside of the laser
cavity or independently of the laser source [20]–[32].

Repetition-rate division has been traditionally achieved by
means of a temporally pulse-picking process using intensity
modulators [20], to reduce the repetition-rate by a desired integer
factor. Through this methodology, large amount of input energy
is lost to obtain the target reduced repetition-rate pulses: losses
scale up with the repetition-rate division factor.

On the other hand, repetition-rate multiplication is most of-
ten implemented by one of two methods of linear optical fil-
tering: 1) spectral amplitude filtering [21]–[27] or 2) spectral
phase-only filtering [28]–[32]. The amplitude filtering method
consists of selecting specific spectral components of the input
source, and eliminating the others, resulting in a repetition-
rate increase. The periodic frequency separation of the selected
spectral components corresponds to the output repetition-rate.
Amplitude filters can be realized by using Fabry-Perot etalons
[21], array waveguide gratings [22], [23], or superimposed fiber
Bragg gratings (FBGs) [24]. One of the main drawbacks of this
method is that it is very sensitive to a possible misalignment or a
drift of the input source spectrum relative to the filter, especially
for filters having high spectral selectivity/finesse. Moreover, the
finite extinction ratio of the filtered components leads to a peri-
odic amplitude modulation of the multiplied pulses. More im-
portantly, a large amount of energy is lost during the filtering
process, especially for higher rate multiplications.

On the contrary, rate multiplication techniques based on spec-
tral phase filtering requires equal passing of all frequency com-
ponents in amplitude, so that ideally no input energy is lost in
the process. Typical methods for repetition-rate multiplication
using spectral phase are based on the ‘temporal Talbot effect’
[26]–[32]. In addition to energy efficiency, Talbot-based rate
multiplication techniques exhibit a simple configuration involv-
ing only a piece of a dispersive medium, such as an optical fiber.
They are also robust against possible misalignments or drifts
of the input source spectrum, and they have the capability of
mitigating amplitude and phase noise present in the input pulse
train- a capability that is intrinsic to the use of dispersion [33].

In all traditional techniques for repetition rate division and
multiplication, the ratio of the output to the input repetition rate
is constrained to be an integer. In addition, reconfigurability of
the rate-multiplication factor is not possible without significant
changes in the system configuration. Moreover, the physical
mechanisms for multiplication and division are entirely different
such that “arbitrary repetition rate control” is not possible using
a single device, but requires the stacking of different systems.

Recently, we have developed a single platform using the
temporal Talbot effect for arbitrary repetition rate control,

Fig. 2 Recent advances in repetition-rate control of periodic optical pulse
trains based on temporal Talbot effects.

providing the possibility of not just multiplying the repetition
rate by any fractional factors other than integers, but also di-
viding the original repetition rate by any fractional and integer
factors. Additionally, this new platform provides a substrate to
build a programmable integer repetition-rate multiplier. These
advances are noted in Fig. 2 [34]–[38]. The proposed platform
involves the use of a suitable combination of temporal phase
modulation and dispersion-induced temporal Talbot effect on
the input periodic pulse train. Arbitrary control of the repetition
rate (involving repetition-rate multiplication and division by any
integer and fractional factors) can be achieved by adjusting the
phase-modulation profile and group-velocity dispersion value
of the dispersive medium.

In this article, our goal is to provide a compact overview of the
fundamentals of the temporal Talbot effect and then review the
recent progress to date on the design, development and experi-
mental demonstration of such methodology for arbitrary control
of the repetition-rate of periodic optical pulses. In our review, we
will narrow our attention to dispersion-induced temporal Talbot
effects.

II. TEMPORAL TALBOT EFFECTS

Temporal Talbot effects, also referred to as temporal self-
imaging, are observed when a periodic temporal signal propa-
gates through a first-order dispersive medium [29]. The disper-
sive medium is characterized by a linear group delay (quadratic
phase response) as a function of frequency with a slope of
φ2 , also referred to as the first-order dispersion coefficient. In
the case of narrowband signal propagation through a single-
mode optical fiber, the first-order dispersion coefficient, φ2 , also
increases linearly with the propagation distance, φ2 = β2 z,
where z is propagation distance and β2 is the fiber dispersion
parameter.

Fig. 3 shows the effect of first-order dispersion on the fre-
quency components of a single optical pulse, versus a periodic
pulse train, for different amounts of dispersion. Here, we show
the joint time-frequency (TF) representation, similar to a spec-
trogram, to track the evolution of the spectral components of the
pulse/pulse train as a function of time. For each TF represen-
tation, the bottom plot represents the temporal variation of the
optical waveform and the plot at the left represents the corre-
sponding spectrum, with the 2-D TF energy distribution shown
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Fig. 3. Time-frequency analysis of linear propagation of optical waveforms in
a first-order dispersive medium. t: time; f : frequency; p: instantaneous power.

in the larger, central plot. This 2D image provides information
about the temporal location of the signal spectral components or
in other words, it shows which of the spectral components of the
signal occur at each instant of time. Fig 3(a) shows propagation
of a short optical pulse exhibiting a wide spectrum. The spectral
components of the pulse travel at different speeds, temporally
shifting according to the group delay curve of the dispersive
medium, i.e., a linear group-delay variation for first-order dis-
persion. More specifically, the pulse spectral components sepa-
rate temporally from each other as they propagate through the
dispersive medium, leading to the distortion and broadening of
the temporal shape of the pulse.

An interesting situation occurs when a stream of flat-phase
short optical pulses, repeating with temporal period of T (having
discrete frequency components with spectral period of F =
1/T ), propagates through a dispersive medium instead. As can
be observed in Fig. 3(b), each individual pulse in the sequence
contains the entire signal’s spectral components, which occur
in fact with an exact temporal synchronization. As expected for
a dispersive process, the individual pulses are first temporally
broadened, see Fig. 3(a). As the signal continues propagating
through the dispersive medium, the neighboring pulses start to
overlap temporally giving rise to inter-pulse interference and
distortion of the individual input pulses.

However, if we choose the dispersion value according to a
temporal Talbot effect condition (specific equations defined be-
low), the inter-pulse interference leads to a reproduction of the
original pulse shape (self-image of the original signal), either

with the same temporal period or a smaller temporal period than
that at the input, Fig. 3(c). In the particular example shown here,
the dispersion value is fixed such that discrete spectral compo-
nents spaced by a frequency period of F are delayed with respect
to each other by half the original pulse rate period (T/2). As a
result, we observe the formation of individual pulses occurring
with period two times shorter than that at the input and where the
corresponding frequency bands are vertically realigned (resyn-
chronized).

In fact, the Talbot condition, Eq. (2), predicts an infinite
amount (though discrete) of such locations along the dispersive
medium where frequency components realign and resynchro-
nize, in a similar way to that illustrated for the 2-times rate
multiplication process in Fig. 3(c). Therefore, as the optical
pulse train propagates further along the dispersive medium, we
will observe many self-images of the original signal. A map of
these coherence revivals as they occur for increasing dispersion
resembles an ornate Persian rug and has been named the “Talbot
Carpet.” Fig. 4 shows a small portion of the Talbot Carpet.

In particular, Fig. 4 represents the evolution of a flat-phase
input pulse train through a section of a dispersive optical fiber.
The input pulse train (at z = 0) is perfectly self-imaged after
dispersive propagation through an integer multiple of the fun-
damental Talbot distance, zT , (integer Talbot images) defined
as [29]:

φ2 = β2zT =
T 2

in

2π
(1)

where Tin is the repetition period of the input pulse train at
z = 0.

Moreover, in addition to the mentioned ‘integer’ self-images,
there also exists an infinite amount of fractional distances
(fractional values of the fundamental Talbot distance) where
rate-multiplied self-images of the original input pulse train are
obtained at [29]:

φ2 =
s

m
β2zT =

s

m

T 2
in

2π
(2)

where s is a positive integer and co-prime with
m (= 2, 3, 4, . . .). In the conventional Talbot effect, the
rate-multiplication factor is equal to m, M = m. See exam-
ples in Fig. 4 at the fractional Talbot distances zT /2, 2zT /3,
and 3zT /4. As mentioned above, dispersive propagation speeds
up and slows down the different frequency-component “colors,”
originally in-phase that make up the pulse train, redistributing
the original signal energy into the mentioned different temporal
intensity patterns. An integer self-image exhibits the same
repetition rate as the input, whereas in the multiplied self-
images, the repetition rate is increased, and the individual pulse
intensity is correspondingly decreased by an integer factor. In
particular, the repetition-rate multiplication (and corresponding
intensity division) factors for the multiplied self-images shown
in Fig. 4 at zT /2, 2zT /3, and 3zT /4 are integer numbers of 2,
3, and 4, respectively. We recall that the term self-image refers
to the fact that the temporal shape of each individual waveform
in the Talbot patterns is an exact, undistorted copy of the input.
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Fig. 4. Standard temporal Talbot effect. Evolution of the intensity and phase of a repetitive input pulse train through propagation along a first-order dispersive
medium, where the group delay depends linearly on the frequency variable, also linearly increasing with the propagation distance (z). The multiplied self-images
are affected by a deterministic pulse-to-pulse residual temporal phase profile (dashed black).

In addition to intensity, the temporal phase of the input
pulse train also evolves as it propagates through the dispersive
medium. In an integer self-image, the uniform temporal phase
profile of the input is also restored. However, the multiplied
self-images, such as those observed at distances zT /2, 2zT /3,
and 3zT /4 are affected by a deterministic pulse-to-pulse resid-
ual temporal phase structure (dashed black lines in Fig. 4).
For instance, at the fractional distance zT /2, in the case of
multiplication by m = 2, the dispersive medium produces two
replicas of the pulses with a repeating temporal phase profile
of 0, π/2, 0, π/2, . . .. The residual phase for a particular frac-
tional image can be analytically calculated for a given s and m.
The phase function of the n-th pulse of a particular fractional
image, ϕn , with a given s and m can be analytically obtained as
[39], [40]:
when s is even and m is odd or vice versa,

ϕn = − s

m

([
1
s

]
m

)2

π n2 (3.a)

when both s and m are odd

ϕn = −2
s

m

[
1
2

]
m

([
1
2s

]
m

)2

π (2n + m)2 (3.b)

where [ 1
a ]b is the inverse of a modulo b. If these phase shifts

are reduced to a 2π range, a periodic sequence of phase steps
with a fundamental period equal to m, namely ϕn = ϕn+m , is
obtained; see examples in Fig. 4.

Most of the practical applications of the Talbot effect pre-
sented to date (i.e. before our proposed methodology) have con-
centrated on of the temporal distribution of the input signal’s
intensity and neglected the phase properties. However, in the
following Section, we show how the phase properties yield a
powerful tool to provide an unprecedented degree of flexibility
to control and manipulate the output pulse repetition rate and
corresponding energy per pulse.

III. TALBOT-BASED REP-RATE CONTROL

Despite its attractive set of advantages, traditional Talbot-
based rate multiplication exhibits a number of intrinsic con-
straints that impair its practical use. For instance, as can be

inferred from Eq. (2) and Fig. 4, the technique is limited only to
multiply the repetition rate by an exact integer multiple of the
input, i.e., the possibility of performing rate multiplication by
fractional factors is not attainable. Moreover, such systems are
not tunable. Multiplication factors are chosen by implement-
ing a fixed amount of dispersion in order to impart a precise
amount of spectral phase, typically through a section of disper-
sive fiber or a linearly chirped fiber Bragg grating (LC-FBG).
It is therefore not straightforward to tune or program the rate-
multiplication factor without changing the dispersive element-
a significant system reconfiguration.

However, the self-imaging condition in Eq. (2) only applies
to the conventional rate multiplication processes starting from
z = 0, where the input signal is a flat-phase pulse train, to a
multiplied image at a fractional distance. As can be inferred from
Fig. 4, there exists another possible set of rate transformational
processes on the Talbot carpet, i.e., the repetition-rate alters by
moving from one self-image to the other. In order to overcome
the aforementioned limitations of the temporal Talbot effect, one
need only consider the unlimited possible rate transformational
processes along the carpet. Essentially, by taking into account
the temporal phase, one can gain access to the intermediate
planes on the carpet and start at any location within the carpet
(not necessarily at z = 0) so that to transform the input periodic
waveform to that obtained at any other desired location in the
carpet. Hence, accessing intermediate planes by controlling the
temporal phase provides a versatile key to realize any desired
rep-rate change.

For example, one can start from a multiplied image at a frac-
tional distance as the input, and transform to the next appropriate
fractional or integer distance. This transition on the carpet en-
ables the possibility of both repetition-rate multiplication and
division with any fractional and integer factors. As shown in
Fig. 4, for example, a pulse train starting at a fractional dis-
tance zT /2 will be rate multiplied by a factor of M = 2 at
the fractional distance 3zT /4. Or the input pulse train starting
at a fractional distance zT /2 will be rate divided by a fac-
tor of D = 2 at the integer distance of zT . To realize these
repetition-rate multiplication and division processes, it requires
first the application of a prescribed temporal phase-modulation
profile to a flat-phase input signal to make it “appear” like the
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Fig. 5. Configuration of the proposed platform to control the repetition-rate
of an optical pulse train with a temporal period of Tin . Tout is the temporal
period of output periodic pulses, and PM is a phase modulator.

pulse train at the starting fractional distance. Next, it requires
propagation through an appropriate dispersive delay in order to
reach the final target fractional/integer self-image. For instance,
if we phase condition a flat-phase input pulse train, by phase
modulation profile of 0, π/2, 0, π/2, . . ., to look like the pulse
train at zT /2, subsequent propagation through zT /2 more of
dispersive propagation will give the output shown at zT , one-
half the repetition-rate. Fig. 5 illustrates the resulting designed
platform for the repetition-rate control methodology, where the
rate-multiplication or division factor is determined by the phase
modulation function, ϕn , and dispersion φ2 .

Phase-modulation of the input pulses along the time domain
can be performed either electro-optically [41], [42] or through
an optical nonlinear process [43]–[45]. In this design, we choose
the electro-optic phase modulation scheme as this offers the sim-
plest and most energy-efficient (i.e., the lowest energy) mech-
anism for temporal modulation of an optical signal. A crucial
advantage to this new platform for repetition rate control is that
it involves two lossless processes- temporal phase modulation
and spectral phase filtering. The output signal energy is only
reduced by the insertion loss of the phase filtering devices, pre-
serving nearly all of the input signal energy.

In this Section, we will show how if the temporal phase mod-
ulation function ϕn , and spectral phase modulation φ2 , are prop-
erly selected, a variety of repetition-rate controlling processes
can be implemented. Our discussion is organized as follows:
(III.A) Energy-preserving programmable integer rep-rate mul-
tiplication using a fixed dispersion, (III.B) Energy-preserving
fractional repetition-rate multiplication of optical pulse trains,
(III.C) Energy-preserving integer repetition rate division of op-
tical pulse trains, and (III.D) Energy-preserving fractional rep-
etition rate division of optical pulse trains.

A. Programmable Integer Rep-Rate Multiplication

As mentioned above, a Talbot-based rate multiplier requires
the use of a proper, fixed amount dispersion (e.g., a length of
dispersive fiber or a LC-FBG) for a given integer multiplication
factor [29]. For a given input signal with a repetition period of
Tin , the amount of dispersion is strongly dependent on the multi-
plication factor, M = m, Eq. (2). Hence, in order to modify the
multiplication factor in this technique, one needs to change the
dispersive medium accordingly. This has been the primary im-
pediment to realizing a tunable multiplication technique based
on dispersion-induced Talbot effect, owing to the fact that avail-
able dispersive media (e.g., optical fibers or LC-FBGs) do not
possess the flexibility to modify their group delay dispersion
without mechanical manipulation. To overcome this constraint,

one can exploit alternative integer-rate multiplication processes
also observed along the Talbot carpet. For example, a multiplied
self-image at the fractional distance zT /2 will be multiplied in
repetition-rate by a factor of M = 2 at the fractional distance
3zT /4. As a matter of fact, in this design, the self-image at zT /2
plays the role of the input pulse train, with a repetition period of
Tin , and the self-image at 3zT /4 is the output with a temporal pe-
riod of Tout = Tin /M . This process can be emulated using the
scheme in Fig. 5, pre-introduction of the temporal phase of the
self-image signal at zT /2 to a flat-phase input signal by means
of a phase-modulation mechanism and propagation through an
appropriate amount of dispersion. The needed amount of disper-
sion for this rate multiplication process is the difference between
the fractional distance zT /2 and the fractional distance 3zT /4,
i.e. Δz1 in Fig. 4. Mathematical calculations presented in [34]
show that, if the two fractional self-images are properly se-
lected, the amount of dispersion between these two fractional
self-images is independent of the desired rate-multiplication
factor, M, depending only on the temporal period of the input
pulse train to be processed. The derived analytical expression
for the required dispersion of the dispersive medium is [34]

φ2 = β2Δz1 =
T 2

in

2π
(4)

Note that Eq. (4) only involves the repetition period of the
multiplied image at the starting fractional distance, i.e. Tin ,
and does not depend on the desired rate multiplication factor
“M”. This condition is indeed analogous to that of the con-
ventional integer self-imaging shown in Eq. (1), nevertheless,
it applies for all multiplication factors. For example, as men-
tioned above, though the multiplication factor is M = 2 for
the multiplication process from the fractional distance zT /2,
to the fractional distance 3zT /4, the differential dispersion is
as shown in Eq. (4). This is the main consequence of Eq. (4),
implying that for a given input signal, unlike the condition in
Eq. (2), the required dispersion is fixed for all multiplication
factors (M = 1, 2, 3, 4, . . . .).

The required temporal phase modulation profile to be applied
on the input optical pulse train is obviously the pulse-to-pulse
phase profile corresponding to the fractional self-image at the
starting fractional distance, to be calculated by Eq. (3) (for rate
multiplication by a factor M).

For a given multiplication factor, M, we only need to apply
the corresponding phase function in Eq. (3) on the n-th incom-
ing temporal pulse (n = 0, 1, 2, . . . , m − 1, and periodically
repeated). Note that in Eq. (3), for a given m, s can be cho-
sen arbitrarily as long as it is a co-prime with m. By setting
s = m − 1, we can simplify further the required phase func-
tions in Eq. (3). The resultant phase modulation function then
can be re-written as [34]:

ϕn =
m − 1

m
π n2 (5)

Hereafter, we name m as the phase modulation parameter.
In this programmable rate multiplier design, the multiplication
factor is equal to the phase modulation parameter, i.e., M = m.
Note that the phase shift in Eq. (5) has been shown to induce a
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Fig. 6. Temporal phase-modulation patterns required for multiplication fac-
tors M = m = 1, 2, 3, and 4, as determined by Eq. (4). The dashed red lines
show the ideal temporal phase profiles, and the solid blue lines show the actual
phase drive delivered by the AWG.

spectral self-imaging effect on the modulated pulse train [41],
[42]. In particular, the temporal phase-modulation process pro-
duces new frequency components, reducing the frequency spac-
ing of the input signal discrete comb-like spectrum by an integer
factor of m.

In summary, if the value of the dispersive medium in Fig. 5 is
fixed to satisfy the condition Eq. (4) with the repetition period of
Tin , the repetition-rate of the output signal can be programmed
simply by modifying the temporal phase-modulation function
obtained from Eq. (5) for any given integer m. Notice that when
m = 1, the phase function Eq. (5) is constant and equal to zero,
i.e., ϕn = 0. This case corresponds to the conventional integer
Talbot effect where the input signal is exactly replicated at the
output.

We experimentally have demonstrated tunable repetition-
rate multiplication by factors ranging from M = 1 to 4
of a 9.7 GHz mode-locked fiber laser source, generating
phase-coherent, nearly transform-limited Gaussian-like pulses
with a FWHM of 6-ps at 1550 nm. The input optical pulse train
is first phase-modulated in the time-domain by a 25 GHz band-
width commercial electro-optic PM (EOspace), driven by an
arbitrary waveform generator (AWG) (Tektronix AWG7122C,
7.5 GHz analogue bandwidth). The pulses are then propa-
gated through a dispersion-compensating fiber (DCF) mod-
ule, providing a fixed first-order dispersion coefficient of φ2 ≈
1690 ps2/rad.

Fig. 6 shows the prescribed electro-optic phase modulation
profiles (ϕn ), derived from Eq. (5), applied to the input optical
pulses, for the cases when we target multiplication factors from
M = m = 1 to 4, respectively. The temporal phase functions
are generated from the AWG. The dashed red lines show the
ideal temporal phase profiles uploaded in the AWG, and the
blue solid lines show the actual phase drive delivered by the
AWG captured with a 40-GHz electronic sampling oscilloscope
(ESO) in the averaging mode with 16 averages.

Fig. 7 shows the optical spectra of the signals after temporal
phase modulation, recorded with an optical spectrum analyzer,
showing the predicted spectral self-imaging effect, leading to
the anticipated reduction in the comb frequency spacing of the
input signal by factors of m = 1, 2, 3 and 4, respectively. Fig. 8

Fig. 7. Measured optical spectra of the optical pulse trains after phase
modulation.

Fig. 8. Optical sampling oscilloscope (OSO) time trace of pulse trains at
the dispersive fiber output for the desired multiplication factors of M = m =
1, 2, 3 and 4.

shows the temporal intensity waveforms of the resultant mul-
tiplied pulse trains after dispersion. All the optical temporal
waveforms throughout this paper were measured by a 500-GHz
bandwidth optical sampling oscilloscope (OSO) in the averaging
mode with 4 averages, unless otherwise specified. The multi-
plied rates after dispersion are 9.7, 19.4, 29.1 and 38.8 GHz,
confirming the functionality of the proposed tunable pulse rate
multiplication scheme. The deterioration on the pedestal of each
output pulse train is likely inherited from the presence of low-
power pedestals at the input signal.

B. Fractional Rep-Rate Multiplication

All the demonstrated repetition-rate multiplication tech-
niques, including those based on Talbot effects, are limited to
output repetition-rates that are “integer” multiples of the ini-
tial pulse repetition rate. Therefore, for example, using a fixed
10 GHz pulse source, it is not attainable to produce a needed
15 GHz train of pulses.

Here we show how the same scheme shown in Fig. 5 can also
be reconfigured to achieve any desired fractional repetition rate
multiplication factor [35]. As a matter of fact, rate multiplication
processes on the Talbot carpet, from a multiplied self-image to a
next one with a higher rate, are not necessarily limited to integer
rate-multiplication factors. As shown in Fig. 4, repetition rate
of a pulse train starting at the fractional distance zT /2 will
be multiplied by a fractional factor of M = 3/2 = 1.5 at the
fractional distance 2zT /3. Likewise, a pulse train starting at the
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fractional distance 2zT /3 will be repetition-rate multiplied by
fractional factor of M = 4/3 = 1.33 at the fractional distance
3zT /4. According to the Talbot carpet, any desired fractional
repetition-rate multiplication factor can be obtained, as long as
the output period is sufficiently long so that individual pulse
waveforms do not overlap along the time domain. Generally, the
rate-multiplication factor can be designed to be any desired frac-
tional number, expressed as M = q/m, where m and q are two
co-prime integers and q > m. In fact, m is the multiplication
factor of the starting multiplied image and q is the multiplication
factor of the target multiplied image, with respect to the flat-
phase pulse train at z = 0, see in Fig. 4. Therefore, similar to the
programmable rate multiplier design, in Fig. 5, we use the phase
profile function of the starting self-image, that is the same phase
profile function introduced in Eq. (5). Recall that we named m
as the phase modulation parameter. In this case, for example,
for a phase modulation parameter of m = 2, the multiplication
factor will be M = q/m = q/2 = 1.5, 2.5, 3.5, . . . (for
q = 3, 5, 7, . . . , respectively) or for a phase modulation
parameter of m = 3, the multiplication factor would be
M = q/m = q/3 = 1.33, 1.66, 2.33, 2.66, 3.33 . . .(for
q = 4, 5, 7, 8, 10, . . . , respectively). However, the amount
of the required dispersive medium is different than that of the
programmable rate multiplier and can be calculated by the
differential distance between the selected multiplied fractional
distances, e.g., Δz2 distance between zT /2 and 2zT /3 in
Fig. 4. Therefore, the dispersive medium should introduce a
dispersion value of [35]:

φ2 = β2Δz2 =
1
M

T 2
in

2π
. (6)

Notice that, unlike the programmable rate multiplier design,
the needed amount of dispersion for the fractional rate multipli-
cation is inversely proportional to the rate multiplication factor,
M. Hence, in order to modify the fractional multiplication factor,
one needs to change also the dispersive medium accordingly.

Fig. 9 represents experimental verification of this concept
by demonstrating the fractional rate multiplication by factors
of M = q/m = 1.5, 2.5 (where the denominator of M or
phase modulation parameter is m = 2 and the numerators are
q = 3, and 5, respectively) and M = 1.33 and 2.33 (where
the denominator of M or phase modulation parameter is m = 3
and the numerators are q = 4, and 7, respectively). The
original laser periodic pulses are first phase-modulated along
the time domain by an electro-optic PM with a phase function
obtained from Eq. (5) for phase-modulation parameters of
m = 2 and 3. Subsequent propagation through a first-order
dispersive medium, whose dispersion coefficient is fixed to
satisfy the condition Eq. (6), φ2 ≈ 890 ps2/rad, will provide
the output pulse train with a repetition rate M-times that of the
input sequence. The used phase modulation profiles m = 2
and 3 are the same as Figs. 6(b) and (c), respectively.

C. Integer Rep-Rate Division

The temporal Talbot effect has been traditionally known as
a phenomenon that is capable of multiplying the repetition-

Fig. 9. Experimental results of fractional rate multiplication. (a)-(d) Measured
temporal waveforms of the input pulse trains (dashed red) together with their
self-imaged fractional rate-multiplied copies (solid blue). The repetition-rate of
the input and output pulse trains, respectively, are (a) 10.9 GHz and 16.4 GHz
( = 10.9 GHz × 1.5), (b) 8.46 GHz and 21.16 GHz ( = 8.46 GHz × 2.5),
(c) 11.64 GHz and 15.52 GHz ( = 11.64 GHz × 1.33), (d) 8.77 GHz and
20.46 GHz ( = 8.77 GHz × 2.33). Notice that for all represented traces (input
and output pulse trains), the intensity profiles are plotted normalized with respect
to the corresponding pulse peak power.

rate of periodic pulse sequences — the generation of higher
repetition-rate pulses from a lower repetition-rate pulse train.
In this multiplication process, the peak intensity of individual
input pulses is reduced with the same multiplication factor. In
[36], we performed a reverse-engineering of the conventional
Talbot effect, that is referred to as the “inverse temporal Talbot
effect”, to develop an energy-preserving repetition-rate division
technique,—the generation of lower repetition-rate pulses from
a higher repetition-rate pulse train.

If we choose any multiplied image at a fractional distance
on the Talbot carpet as the input, instead of the conventional
phase-free input at z = 0, further dispersive propagation to the
integer Talbot distance zT produces an output with reduced repe-
tition rate by integer factors, i.e., D = 2, 3, 4, . . .. As shown in
Fig. 4, the repetition-rate of a pulse train starting at the fractional
distance 3zT /4 will be divided by a factor of D = 4 after a
dispersive propagation of Δz3 = zT /4 to the integer Talbot
distance zT .

Using the same scheme in Fig. 5, we can emulate this
repetition-rate division process. We first phase-modulate a flat-
phase input to make it look like a pulse train at a fractional
distance on the Talbot carpet. The phase modulation function
can be obtained by Eq. (5) for a given phase-modulation pa-
rameter, m. The resulting pulse train after phase modulation is
then propagated through a Δz3 more of dispersion to reach the
Talbot distance zT . The amount of dispersion that is needed to
move from a fractional self-image to the Talbot distance is [36]

φ2 = β2Δz3 = m
T 2

in

2π
(7)

In this problem, the division factor is equal to the phase mod-
ulation parameter, i.e., D = m. Note that the needed amount
of dispersion for the integer rate division depends on the rate
division factor, D. Hence, in order to modify the division factor,
one needs to change also the dispersive medium accordingly.
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Fig. 10. Experimental results of repetition-rate division by integer factors.
(a) Prescribed temporal phase modulation profiles; (b) Temporal trace of in-
put (dashed red) and output (solid blue) showing repetition-rate division and
corresponding pulse peak power amplification by the factors D = 2 and 15.

Since only phase manipulations are involved in the combined
temporal phase-modulation and temporal Talbot process, the
total energy of the original pulse train is preserved, aside from
practical passive losses associated to the different optical com-
ponents involved. Therefore, such a rate division process can be
interpreted as coherently adding the input pulses’ energy into
fewer pulses (i.e., coherent addition of energy of every D pulses
into one pulse), resulting in each output individual pulse to be
an amplified copy of the input. This can be perceived in Fig. 4;
for example, the peak power of individual pulses starting at the
fractional distance 3zT /4 will be amplified by the same order as
the rate division factor D = 4 at the integer Talbot distance zT .
In general, if the pulse peak power of the input train is Pin and
the temporal period is Tin , the process transforms it into a train
with a temporal period of Tout = D × Tin and with a pulse
peak power equal to Pout = D × Pin [36].

Fig. 10 shows two examples of repetition rate division by
the factors of D = 2 and 15 and corresponding pulse intensity
amplification. Figs. 10(a) and (b) show the prescribed electro-
optic phase modulation profiles prescribed by Eq. (5), ϕn , ap-
plied to input optical pulses, for the cases when we target rate di-
vision factors of D = m = 2, and 15. The experimental results
of the demonstrated energy-preserving repetition-rate division
with factors of D = 2, and 15 at the output of the following
dispersive fiber module are illustrated in Fig. 10(c) and (d),
demonstrating the predicted repetition-rate division and corre-
sponding pulse intensity amplification processes. The system
presents a passive power gain of D. The original repetition rates
of the input pulse trains in the two reported experiments are
9.7 GHz, and 15.43 GHz, respectively. The reduced rates after
the dispersion are 4.85 GHz, and 1.03 GH, respectively.

Notice that the discussed estimates on power gain and re-
lated results (shown in Fig. 10) do not consider passive inser-
tion losses in the rate-division circuit. Due to large amounts
of group delay required (1,000–10,000 ps/nm) for moderate
division factors, dispersion spectral phase from optical fiber
introduces impractical losses. However, dispersive losses can
be reduced to below 1dB by instead using a suitably designed
dispersive line such as a high-reflectivity LC-FBG [37]. This
energy-preserving repetition-rate division process is also re-

Fig. 11. Averaging effect of Talbot amplification for ASE-like noisy fluc-
tuations. Ratio of pulse variance to mean versus 1/

√
N, N = averages = m.

(b) and (c) Electrical sampling oscilloscope traces (b) with passive amplifica-
tion of m = 15 and no scope averaging, (c) without passive amplification and
scope averages of N = 15, for OSNR = 10.

ferred to as the Talbot amplification [36], [37]. Due to this
amplification feature, we have shown in [36], [46], [47] how
this rate division process produces an effective real-time av-
eraging effect on the noise fluctuations of the individual re-
peating waveforms of the train. In particular, Fig. 11 shows
how this process performs similarly to a conventional averag-
ing process, e.g., scope averaging of N consecutive pulses, on
amplified spontaneous emission (ASE)-like intensity noise fluc-
tuations. Fig. 11(a) shows experimental data for the coefficient
of variance (CV), the ratio of the standard deviation to the mean
for the top level, of a noisy pulse (optical signal to noise ratio
(OSNR) = 10) versus the inverse of the square root of ampli-
fication factor D = N (red squares). Also shown is the CV
versus the inverse of the square root of number of scope aver-
ages N (blue circles), demonstrating the equivalence of Talbot
amplification to averaging. The theoretical trend line for scope
averaging, which scales as N, is overlaid (dashed green). Exper-
imental sampling oscilloscope traces in Figs. 11(b) and 11(c)
show how the point-to-point fluctuation is nearly the same for
Talbot amplification and scope averaging.

Fig. 11(b) shows results for a Talbot-amplified pulse by
D = 15 with no scope averaging, and Fig. 11(c) shows results
for a pulse without passive amplification and a regular scope av-
erage of N = 15. Passive amplification is therefore equivalent
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Fig. 12. Experimental results of repetition-rate division by fractional factors.
(a) Prescribed temporal phase modulation profiles; (b) Temporal trace of input
(dashed red) and output (solid blue) showing repetition-rate division and corre-
sponding pulse peak power amplification by the factors D = 1.33 and 2.5.

to a real-time optical average. Said another way, Fig. 11(b) is
the equivalent of Fig. 11(c) without the need for detection and
post-processing. Such a real-time average could be particularly
important where a clean pulse is needed directly in the optical
domain.

D. Fractional Rep-Rate Division

Similar to Talbot-based rate multiplication concept, the
Talbot-based rate division concept is also not limited to in-
teger factors, but rather, it can be extended to realize repeti-
tion rate division and the associated amplification process of
the original pulse train by any desired fractional factor. As
shown in Fig. 4, a transition from the fractional distance of
zT /3 to the fractional distance of zT /2 leads to repetition-
rate division by a factor of D = 3/2 = 1.5. The rate divi-
sion factor can be any desired fractional number, expressed as
D = m/p, where m is the phase-modulation parameter, p is
co-prime with m, and m > p. In this case, for example, for a
phase modulation parameter of m = 5, the division factor will
be M = m/p = 5/p = 2.5, 1.66, 1.25 (for p = 2, 3, 4, re-
spectively). To implement the fractional rate division process in
Fig. 5, the required temporal phase to be applied to the input
pulses and the total dispersion required to achieve repetition rate
division by the factor D are given by Eq. (5), ϕn , and following
Eq. (8) [38], respectively.

φ2 = β2Δz4 = (D − 1) m
T 2

in

2π
(8)

Fig. 12 shows the experimental validation of the concept
of fractional repetition-rate division and corresponding Talbot
amplification. Fig. 12(a) and (b) show the phase modulation
functions, as prescribed by Eq. (5), for the phase modulation
parameters of m = 4 and 5, respectively. Figs 12(c) and (d)
show the temporal traces of the input and output trains for the
rate division factors of D = m/p = 4/3 = 1.33 and D =
m/p = 5/2 = 2.5. The original repetition rates of the input
pulse trains in the two reported experiments are 7.9 GHz, and
18.8 GHz, and the reduced rates after the dispersion are 5.9 GHz,
and 7.5 GH, respectively.

Fig. 13. Superposition of input and output individual pulse waveforms for
(a) programmable integer rep-rate multiplication, (b) fractional rep-rate multi-
plication, (c) integer rep-rate division, and (d) fractional rep-rate division.

The central and perhaps most interesting result of the frac-
tional repetition rate division, and associated fractional pas-
sive amplification, scheme is that it provides the possibility of
achieving fractional averaging of the original repeating wave-
forms [38]. Such a capability is not defined by the mathematics
of discrete averaging, which is strictly limited to application on
an integer number of realizations of the process under test.

Finally, Fig. 13 shows the superposition of the pulse profile
of the input and multiplied/divided output signals. As expected,
in all cases, the output temporal pulses are nearly undistorted
copies of the input pulses. The slight mismatch between input
and output pulse shapes can be mainly attributed to the deviation
of the actual dispersion value used in experiments from the ideal
Talbot condition [34].

IV. CONCLUSION

In this paper, we have reviewed recent work on repetition-
rate control of temporal pulse trains based on temporal Talbot
effects. By manipulating both the temporal and spectral phase
of an input pulse train according to temporal Talbot conditions,
we can arbitrarily multiply and divide its repetition rate using
a single device platform. Therefore, unlike previous work us-
ing the temporal Talbot effect, the desired rate multiplication
or division factor need not be integer. Additionally, in the case
of integer repetition-rate multiplication, the dispersive mecha-
nism need not to be changed from one integer multiplication
factor to the next. In this latest case, one need only to tune the
temporal phase, which we show can be achieved at GHz speeds
electronically through commercial fiber-integrated electro-optic
phase modulators. Moreover, unlike traditional systems for rep-
etition rate control, this method is energy-preserving, imparting
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only insertion loss from the phase filtering devices. Addition-
ally, because temporal Talbot effects coherently generate and
delay frequency components, we observe and quantify noise
mitigating effects of Talbot repetition rate manipulation, such
as real-time optical averaging.
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José Azaña received the Telecommunication Engineer degree and the Ph.D.
degree in Telecommunication Engineering from the Universidad Politécnica de
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