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Abstract Entangled optical quantum states are essential
towards solving questions in fundamental physics and are
at the heart of applications in quantum information science.
For advancing the research and development of quantum
technologies, practical access to the generation and
manipulation of photon states carrying significant quantum
resources is required. Recently, integrated photonics has
become a leading platform for the compact and cost-
efficient generation and processing of optical quantum
states. Despite significant advances, most on-chip non-
classical light sources are still limited to basic bi-photon
systems formed by two-dimensional states (i.e., qubits).
An interesting approach bearing large potential is the use
of the time or frequency domain to enabled the scalable on-
chip generation of complex states. In this manuscript, we
review recent efforts in using on-chip optical frequency
combs for quantum state generation and telecommunica-
tions components for their coherent control. In particular,
the generation of bi- and multi-photon entangled qubit
states has been demonstrated, based on a discrete time
domain approach. Moreover, the on-chip generation of
high-dimensional entangled states (quDits) has recently

been realized, wherein the photons are created in a
coherent superposition of multiple pure frequency
modes. The time- and frequency-domain states formed
with on-chip frequency comb sources were coherently
manipulated via off-the-shelf telecommunications compo-
nents. Our results suggest that microcavity-based
entangled photon states and their coherent control using
accessible telecommunication infrastructures can open up
new venues for scalable quantum information science.

Keywords nonlinear optics, quantum optics, entangled
photons*

1 Introduction

In the last few decades, research has greatly intensified
towards realizing universal quantum computers as well as
simulators, with the promise of being able to perform
calculations that are beyond the capability of conventional
classical computers. To implement a quantum computer, or
quantum information processing in general, physical
systems are required that can support the preparation,
manipulation, and measurement of quantum information
[1]. Technologies that provide these characteristics are
being advanced in several platforms including electronic,
trapped ions, solid state, nuclear magnetic resonance, and
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superconducting systems [2]. What all these platforms
have in common is that quantum states are very delicate,
can quickly deteriorate, and are highly sensitive towards
noise. This characteristic usually requires highly sophis-
ticated experimental facilities, a core technological chal-
lenge towards achieving quantum computers. Among the
many quantum platforms, photons (particles of light) are
very promising, as they exhibit very high noise tolerance
[3]. Indeed, the low decoherence of light, which has
already been exploited for classical telecommunications
[4], transfers to very high noise tolerance in quantum
applications. Additionally, photons are ideally suited to
interact with other quantum platforms, while information
can be encoded into their different degrees of freedom,
such as polarization, phase, path, frequency, time, and
more, which in the classical domain has enabled multi-
plexing in current telecommunication networks. In addi-
tion, photons exhibit excellent transmission properties
through e.g. free-space or optical fibers, which in turn
enables the possibility to create quantum communication
networks [5]. However, optical states with significant
quantum resources (i.e., large Hilbert spaces), which are a
key cornerstone for realizing optical quantum computers,
remain difficult to prepare and control, in large parts
because of increasing experimental complexity and the
need of operations that act probabilistically.
To address these issues, optical quantum research has

focused on two main directions: 1) increase the quantum
resource, and 2) reduce the device complexity to achieve
scalable systems. In the first case, an immediate approach
would be to boost the number of photons, which will in
turn lead to larger entangled states [6–8], similarly to the
approach used for other quantum platforms [9,10].
However, this comes with significant drawbacks, since
the generation of optical entangled states is commonly
achieved with photon pairs in probabilistic processes. As
such, increasing the number of photons means increment-
ing the number of probabilistic sources, which lowers their
efficiency. Furthermore, multi-photon states are highly
sensitive towards losses and noise. The combination of
these drawbacks has so far limited the generation of optical
states to ten entangled photons [6]. A different approach,
that is unique and ideally suited for optical system, is to
simultaneously exploit multiple modes (polarization,
spatial, temporal, spectral) of fewer photons to achieve
large optical quantum states [11–13]. Optical frequency
combs, which are broadband optical sources that have
equidistantly-spaced spectral modes, directly suit this
direction. Due to their well-defined spectral locations,
frequency combs have served as extremely precise optical
rulers, enabling a revolution in high-precision metrology
and spectroscopy [14]. Recently, the classical frequency
comb concept has been extended to the quantum world for
the preparation of non-classical states [15,16]. This
approach brings about many benefits, especially for the
creation of large states. First, optical combs offer many

experimentally-accessible frequencies within a single
spatial mode, where photons of different wavelengths are
transmitted together in a single waveguide. Furthermore,
the intrinsic multi-frequency-mode characteristics enable
the generation of many entangled quantum states simulta-
neously, with the density of these quantum channels
controllable via the spectral mode separation. Finally, the
frequency domain is complementary to other degrees of
freedom, enabling the creation of even larger-scale
quantum states. Quantum frequency combs have until
now been utilized for the generation of heralded single
photons [17–21], as well as two-photon entangled states
via the time [22–25], path [26] and frequency [27] degrees
of freedom. In addition, very complex states, e.g. cluster
states [28,29], and multipartite entangled states [16,30],
have been predicted and achieved for applications in
quantum signal processing, including quantum logic gates
[27], and spectral linear optical quantum computation [31].

2 Quantum optical frequency combs

The first investigations of quantum frequency combs were
based on large free-space cavities embedding bulk non-
linear crystals. In this approach, the resulting optical
parametric oscillator (OPO), is operated below the lasing
threshold. In the nonlinear process, a photon from an
excitation field splits into a pair of photons (signal and
idler) satisfying both energy and momentum conservation
(phase-matching). In cases where the nonlinear crystals
have a large phase-matching bandwidth, a broadband
quantum frequency comb of entangled photon pairs is
created by the OPO at the resonant wavelengths. In
particular, each cavity mode of a frequency comb can be
described by a quantum harmonic oscillator and, analo-
gous to the position and momentum observables, the
field’s continuous-variable Hilbert space can be repre-
sented by its amplitude or phase-quadrature observables.
Quantum state preparation using so-called squeezed states,
where quantum information is encoded in continuous
quadratures of the optical fields, has been remarkably
successful, allowing the generation of many complex
states. Examples include the simultaneous realization of
quadripartite entangled quantum states [29]. Richer
excitation spectra and more tailored nonlinear optical
interactions have been predicted to enable larger states [30]
including an experimentally demonstrated multipartite
entangled state covering up to 115974 nontrivial partitions
of a 10-mode state [32].
Although large complex quantum states have been

widely investigated, bulk-optic based approaches require
large, expensive, and very complex setups, not suitable for
out-of-the lab applications. Furthermore, the quantum states
that have been demonstrated with such OPO approaches
have not yet achieved the level of squeezing required (with
a threshold value of 20.5 dB) for fault-tolerant optical
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quantum computation [33], being typically limited by loss
which degrades the squeezed states. In addition, the spectral
modes of a large OPO cannot be individually addressed due
to their small spectral separation. Reducing the size of the
resonant cavities would allow access to individual
frequency modes and, in turn, also allow one to exploit
single or entangled photons instead of (or in addition to)
squeezed states. Therefore, the miniaturization of optical
frequency combs will bring not only more compact devices
but may open up novel opportunities.
In order to address the second main challenge of

realizing compact and scalable devices, integrated (on-
chip) photonics has established itself as a promising
platform for quantum optics [34,35]. Compact and mass-
producible photonic chips (particularly those compatible
with the silicon chip industry) enabled compact, cost-
efficient, and stable devices for the generation and
processing of non-classical optical states. This is high-
lighted by the demonstration of on-chip single photon
sources [36,37], generation of entangled states [25,26,38],
as well as the realization of basic algorithms [39–41].
Integrated quantum photonics is ideally suited to generate
quantum optical frequency combs. Certainly, the on-chip
realization of optical combs is a very active research field
[42,43], and many of its principles are reflected in the first
demonstrations of on-chip quantum combs. As materials
used for on-chip integration typically exhibit third-order
optical nonlinearity, spontaneous four-wave mixing
(SFWM) can be used for the generation of integrated
quantum frequency combs [21].

3 On-chip comb of heralded single photons

In SFWM, the nonlinearity mediates the annihilation of
two photons from an excitation field and the simultaneous
generation of two daughter photons named signal and idler.
By optically exciting a single cavity resonance, SFWM

symmetrically populates neighboring resonances with
photon pairs, creating a highly stable source of heralded
single photons distributed over several channels (where the
measurement of the signal heralds the presence of the idler,
and vice versa) [17]. First realizations showed that a
broadband frequency combs can be generated, spanning
the full infrared telecommunications bandwidth, see Fig. 1.
Using photon auto-correlation measurements, it was
verified that a pure single frequency mode photon was
produced in the signal and idler resonances, respectively,
and that the bi-photon state has a Schmidt mode number
close to 1 (corresponding to a pure separable state), see
Fig. 2 [17,27]. In contrast to free-space OPOs, where the
spectral mode spacing is very narrow, on-chip resonators
enable mode separations compatible with standard tele-
communication filters. Spectrally selecting one pair of
signal and idler photon resonances has enabled heralded
sources in silicon-based microrings [18,19] and microdisks
[44], as well as amorphous silicon microrings [45]. The
excitation of such on-chip frequency combs can be
achieved in different manners. First, an external contin-
uous-wave laser can be used, however this usually requires
active locking of the laser to the resonance due to thermal
bistability [46] and is also associated with a reduced purity
of the generated photons. Another approach is to use
pulsed excitation, which has several advantages in terms of
synchronization. Furthermore, in the pulsed excitation
scheme, no active feedback is required, since a broadband
laser is filtered to match the full resonance, and small
thermal drifts are not an issue. However, the filtering
results in a very inefficient excitation, and most of the
optical power is lost [22,27]. A very elegant approach to
solve both locking and power issues can be achieved by
placing the resonator within a self-locked laser cavity
[47,48]. This approach immediately compensates for any
drifts in the resonance, and only frequencies within the
resonator bandwidth can lase, leading to an energy-
optimized excitation. By adjusting the external lasing

Fig. 1 Quantum frequency comb generation in integrated microring resonators. (a) Via spontaneous four-wave mixing inside the
nonlinear microcavity [48], two pump photons at frequency (ωp) are converted to one signal and one idler photon at frequenciesωi andωs,
with energy conservation demanding ωi þ ωs ¼ 2ωp. Inset: an integrated Hydex photonic chip (based on a high refractive index glass
with similar properties to silicon oxynitride) compared to a Canadian one-dollar coin. (b) A broad measured quantum frequency comb
spectrum spanning from the S to the L telecommunications band [22]
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cavity, both CW [17], as well as stable pulsed excitation
[47] can be achieved.

4 On-chip comb of entangled multi-photon
states

An important step following the realization of correlated
photon pairs is achieving entanglement. Entangled photon
pair generation has been demonstrated in silicon and
silicon nitride microring resonators by means of energy-
time [23–25], or path-entanglement [26] approaches. In
addition, because of the multi-channel property, these on-
chip entangled quantum sources exhibit compatibility with
telecommunications wavelength multiplexing techniques
[17,22]. With respect to quantum frequency combs, their
multimode nature can be used here to achieve highly
parallel generation of entangled states. In particular, a
double-pulse excitation of a single resonance was used to
demonstrate the realization of time-bin entangled photon
pairs over the entire frequency comb spectrum [22]. The
phase-locked double pulses were prepared using stabilized
fiber-interferometers, and the excitation power was chosen
such that the double pulses only emit one photon pair,
which is then in a superposition of two temporal modes,
see Fig. 3. For their characterization, the photons were sent
to a set of unbalanced interferometers, which enables the

implementation of projection measurements for quantum
interference and tomography measurements, see Fig. 4.
Most remarkably, due to the resonance characteristics of
the cavity, the coherence time of the excitation field is
matched to that of the photons. This configuration enables
the generation of multiple entangled photons pairs
simultaneously over multiple spectral lines. This distinc-
tive multimode characteristic of the frequency comb
allowed the demonstration of the first four-photon
entangled states on a chip, by post-selecting two signal
and idler pairs on different resonances simultaneously. The
realization of this four-photon entangled state was
confirmed through quantum interference as well as
quantum state tomography, see Fig. 5 [22].

5 On-chip comb of high-dimensional
entangled photon states

From a different point of view, photon pairs (signal and
idler) can be generated in a quantum superposition of many
frequency modes [27]. This was achieved by injecting a
nonlinear resonator with a spectrally-filtered mode-locked
laser to excite a single resonance of the microring at ~1550
nm wavelength, in turn producing pairs of correlated signal
and idler photons spectrally-symmetric to the excitation
field covering multiple resonances, see Fig. 6. Considering

Fig. 2 Photon coincidence, and auto-correlation measurement. The high coincidence to accidental ratio in the photon coincidence peak
(a) shows that the source can be used as a good quantum source. The dip in the heralded auto-correlation peak (b) confirms that the photons
can be used as heralded single photons. The single photon auto-correlation peaks for both signal (c) and idler (d) photons are reaching two,
confirming that the photons are emitted into pure states
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the quantum nature of this process, the individual photons
were intrinsically generated in a superposition of multiple
frequency modes [27]. Due to the energy conservation of
SFWM, this approach leads to the realization of a two-
photon high-dimensional frequency-entangled state. To
characterize the high-dimensional states, a novel manip-
ulation scheme was developed, which is capable to
perform basic gate operations for coherent state control.
The quantum gate was realized using a configuration
composed of two programmable filters and one electro-
optic phase modulator, as schematized in Fig. 6 and
explained in more detail in Fig. 7. The first programmable
filter was used to impose an arbitrary spectral amplitude
and phase mask on the high-dimensional state, see Fig. 7
(b). The manipulated state was then sent to an electro-optic
phase modulator, which was driven by a radio frequency
(RF) synthesizer. The imposed optical phase modulation
generated coherent sidebands from the input frequency
modes. When the sideband frequency shift was chosen to
match the spectral mode separation of the quantum state,
i.e., the ring’s free spectral range (FSR), these input
frequency modes were coherently mixed. Then, a second
programmable filter (Fig. 7(d)) was used to select different,
individual frequency components of the manipulated state
through the application of a second amplitude mask.
Finally, each of the two photons was routed to a separate
single photon detector for coincidence detection. High-
visibility measured quantum interference and state tomo-
graphy (Fig. 8) confirmed the first generation of high-
dimensional entangled states on a photonic chip.

6 Conclusion and outlook

On-chip quantum optical frequency combs have been
shown to generate complex entangled optical states, which
were not realized by other means, such as on-chip path or
polarization entanglement. Considering how successful the
quantum frequency comb approach is even in bulk systems
(emitting squeezed states), it is conceivable that the
potential of on-chip quantum combs is extremely sig-
nificant, and the here reviewed experiments only represent
the first steps [49,50]. Furthermore, merging the fields of
quantum optical frequency combs with telecommunica-
tions signal processing will enable even more functional-
ities and has the potential to advance the field of quantum
optics towards large-scale implementation. Indeed, follow-
ing our first realizations of multi-photon and high-
dimensional entanglement on a chip, several other groups
have achieved significant and related breakthroughs. These
include the realization of frequency-bin entangled combs
with 50 GHz spacing [51], using the same coherent
manipulation scheme reviewed here. Reducing the mode
spacing is particularly interesting once the spacing reaches
frequencies achievable by electronics, which will enable
more versatile quantum state control. Indeed, using an
extension of the basic manipulation scheme depicted in
Figs. 6 and 7, it has been shown that by employing two
phase modulators and an additional amplitude/phase filter,
more complex quantum gates such as Pauli and Hadamard
gates can be implemented in the frequency domain [52,53].
This indicates that the processing of optical quantum

Fig. 3 Experimental setup for the generation and characterization of time-bin entangled quantum frequency comb. Double-pulses are
generated by means of an unbalanced interferometer, and are then used to excite the microring resonator for photon pair generation,
emitting a time-bin entangled frequency comb. Another set of interferometers is then used for state characterization [22]
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Fig. 4 Two-photon quantum interference (a) and quantum state ((b) ideal and (c) measured) tomography. By changing the phases of the
characterization interferometers, two-photon quantum interference and quantum state tomography can be performed. The quantum
interference has a visibility exceeding the limit for a Bell inequality violation, and the tomography confirms that a state close to the
maximally entangled ideal Bell state is generated [22]
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Fig. 5 Four-photon quantum state tomography. (a) Ideal; (b) measured. By performing tomography on the four-photon state, the first
generation of a multi-photon entangled state on a photonic chip was confirmed [22]

Fig. 6 Experimental setup for the generation and characterization of high-dimensional quantum states with on-chip optical frequency
combs. The microring resonator is excited with single pulses from a mode-locked laser, generating photon pairs in a superposition of
frequency modes. Using a combination of programmable filters and an electro-optic phase modulator, the quantum states can be
coherently manipulated and projection measurements can be performed [27]
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Fig. 7 Experimental realization of coherent manipulation of high-dimensional frequency-bin entangled quantum states. Individual steps
to control, manipulate and characterize the high-dimensional quantum states are displayed. (a) The initial states |Y〉were generated using
the micro- ring resonator (MRR)-based operational principle illustrated in Fig. 1. (b) Using a programmable filter (PF1), any arbitrary
spectral phase and amplitude mask can be imposed on the quantum states for manipulation. (c) An electro-optic modulator (Mod) driven
by a radio-frequency synthesizer was used to coherently mix different frequency components of the high-dimensional states. (d) A second
programmable filter (PF2) can impose an amplitude and phase mask and route the signal and idler to two different paths. (e) The photons
were then detected using single photon counters and timing electronics [27]
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information by means of telecommunications infrastruc-
ture is a very promising direction. In parallel, significant
work has also been dedicated towards further scaling time-
bin encoded schemes. In particular, fully integrated
interferometers have been realized, which will enable
compact state preparation and characterization on a
photonic chip.
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